LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cgerq2()

subroutine cgerq2 ( integer m,
integer n,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( * ) tau,
complex, dimension( * ) work,
integer info )

CGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.

Download CGERQ2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CGERQ2 computes an RQ factorization of a complex m by n matrix A:
!> A = R * Q.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 
[in,out]A
!>          A is COMPLEX array, dimension (LDA,N)
!>          On entry, the m by n matrix A.
!>          On exit, if m <= n, the upper triangle of the subarray
!>          A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
!>          if m >= n, the elements on and above the (m-n)-th subdiagonal
!>          contain the m by n upper trapezoidal matrix R; the remaining
!>          elements, with the array TAU, represent the unitary matrix
!>          Q as a product of elementary reflectors (see Further
!>          Details).
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 
[out]TAU
!>          TAU is COMPLEX array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors (see Further
!>          Details).
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (M)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The matrix Q is represented as a product of elementary reflectors
!>
!>     Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**H
!>
!>  where tau is a complex scalar, and v is a complex vector with
!>  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
!>  exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
!> 

Definition at line 120 of file cgerq2.f.

121*
122* -- LAPACK computational routine --
123* -- LAPACK is a software package provided by Univ. of Tennessee, --
124* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
125*
126* .. Scalar Arguments ..
127 INTEGER INFO, LDA, M, N
128* ..
129* .. Array Arguments ..
130 COMPLEX A( LDA, * ), TAU( * ), WORK( * )
131* ..
132*
133* =====================================================================
134*
135* .. Local Scalars ..
136 INTEGER I, K
137* ..
138* .. External Subroutines ..
139 EXTERNAL clacgv, clarf1l, clarfg, xerbla
140* ..
141* .. Intrinsic Functions ..
142 INTRINSIC max, min
143* ..
144* .. Executable Statements ..
145*
146* Test the input arguments
147*
148 info = 0
149 IF( m.LT.0 ) THEN
150 info = -1
151 ELSE IF( n.LT.0 ) THEN
152 info = -2
153 ELSE IF( lda.LT.max( 1, m ) ) THEN
154 info = -4
155 END IF
156 IF( info.NE.0 ) THEN
157 CALL xerbla( 'CGERQ2', -info )
158 RETURN
159 END IF
160*
161 k = min( m, n )
162*
163 DO 10 i = k, 1, -1
164*
165* Generate elementary reflector H(i) to annihilate
166* A(m-k+i,1:n-k+i-1)
167*
168 CALL clacgv( n-k+i, a( m-k+i, 1 ), lda )
169 CALL clarfg( n-k+i, a( m-k+i, n-k+i ), a( m-k+i, 1 ), lda,
170 $ tau( i ) )
171*
172* Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right
173*
174 CALL clarf1l( 'Right', m-k+i-1, n-k+i, a( m-k+i, 1 ), lda,
175 $ tau( i ), a, lda, work )
176 CALL clacgv( n-k+i-1, a( m-k+i, 1 ), lda )
177 10 CONTINUE
178 RETURN
179*
180* End of CGERQ2
181*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine clarf1l(side, m, n, v, incv, tau, c, ldc, work)
CLARF1L applies an elementary reflector to a general rectangular
Definition clarf1l.f:127
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
Definition clacgv.f:72
subroutine clarfg(n, alpha, x, incx, tau)
CLARFG generates an elementary reflector (Householder matrix).
Definition clarfg.f:104
Here is the call graph for this function:
Here is the caller graph for this function: