LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zlaqr2.f
Go to the documentation of this file.
1*> \brief \b ZLAQR2 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZLAQR2 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr2.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr2.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr2.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE ZLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
22* IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
23* NV, WV, LDWV, WORK, LWORK )
24*
25* .. Scalar Arguments ..
26* INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
27* $ LDZ, LWORK, N, ND, NH, NS, NV, NW
28* LOGICAL WANTT, WANTZ
29* ..
30* .. Array Arguments ..
31* COMPLEX*16 H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
32* $ WORK( * ), WV( LDWV, * ), Z( LDZ, * )
33* ..
34*
35*
36*> \par Purpose:
37* =============
38*>
39*> \verbatim
40*>
41*> ZLAQR2 is identical to ZLAQR3 except that it avoids
42*> recursion by calling ZLAHQR instead of ZLAQR4.
43*>
44*> Aggressive early deflation:
45*>
46*> ZLAQR2 accepts as input an upper Hessenberg matrix
47*> H and performs an unitary similarity transformation
48*> designed to detect and deflate fully converged eigenvalues from
49*> a trailing principal submatrix. On output H has been over-
50*> written by a new Hessenberg matrix that is a perturbation of
51*> an unitary similarity transformation of H. It is to be
52*> hoped that the final version of H has many zero subdiagonal
53*> entries.
54*>
55*> \endverbatim
56*
57* Arguments:
58* ==========
59*
60*> \param[in] WANTT
61*> \verbatim
62*> WANTT is LOGICAL
63*> If .TRUE., then the Hessenberg matrix H is fully updated
64*> so that the triangular Schur factor may be
65*> computed (in cooperation with the calling subroutine).
66*> If .FALSE., then only enough of H is updated to preserve
67*> the eigenvalues.
68*> \endverbatim
69*>
70*> \param[in] WANTZ
71*> \verbatim
72*> WANTZ is LOGICAL
73*> If .TRUE., then the unitary matrix Z is updated so
74*> so that the unitary Schur factor may be computed
75*> (in cooperation with the calling subroutine).
76*> If .FALSE., then Z is not referenced.
77*> \endverbatim
78*>
79*> \param[in] N
80*> \verbatim
81*> N is INTEGER
82*> The order of the matrix H and (if WANTZ is .TRUE.) the
83*> order of the unitary matrix Z.
84*> \endverbatim
85*>
86*> \param[in] KTOP
87*> \verbatim
88*> KTOP is INTEGER
89*> It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
90*> KBOT and KTOP together determine an isolated block
91*> along the diagonal of the Hessenberg matrix.
92*> \endverbatim
93*>
94*> \param[in] KBOT
95*> \verbatim
96*> KBOT is INTEGER
97*> It is assumed without a check that either
98*> KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
99*> determine an isolated block along the diagonal of the
100*> Hessenberg matrix.
101*> \endverbatim
102*>
103*> \param[in] NW
104*> \verbatim
105*> NW is INTEGER
106*> Deflation window size. 1 <= NW <= (KBOT-KTOP+1).
107*> \endverbatim
108*>
109*> \param[in,out] H
110*> \verbatim
111*> H is COMPLEX*16 array, dimension (LDH,N)
112*> On input the initial N-by-N section of H stores the
113*> Hessenberg matrix undergoing aggressive early deflation.
114*> On output H has been transformed by a unitary
115*> similarity transformation, perturbed, and the returned
116*> to Hessenberg form that (it is to be hoped) has some
117*> zero subdiagonal entries.
118*> \endverbatim
119*>
120*> \param[in] LDH
121*> \verbatim
122*> LDH is INTEGER
123*> Leading dimension of H just as declared in the calling
124*> subroutine. N <= LDH
125*> \endverbatim
126*>
127*> \param[in] ILOZ
128*> \verbatim
129*> ILOZ is INTEGER
130*> \endverbatim
131*>
132*> \param[in] IHIZ
133*> \verbatim
134*> IHIZ is INTEGER
135*> Specify the rows of Z to which transformations must be
136*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
137*> \endverbatim
138*>
139*> \param[in,out] Z
140*> \verbatim
141*> Z is COMPLEX*16 array, dimension (LDZ,N)
142*> IF WANTZ is .TRUE., then on output, the unitary
143*> similarity transformation mentioned above has been
144*> accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
145*> If WANTZ is .FALSE., then Z is unreferenced.
146*> \endverbatim
147*>
148*> \param[in] LDZ
149*> \verbatim
150*> LDZ is INTEGER
151*> The leading dimension of Z just as declared in the
152*> calling subroutine. 1 <= LDZ.
153*> \endverbatim
154*>
155*> \param[out] NS
156*> \verbatim
157*> NS is INTEGER
158*> The number of unconverged (ie approximate) eigenvalues
159*> returned in SR and SI that may be used as shifts by the
160*> calling subroutine.
161*> \endverbatim
162*>
163*> \param[out] ND
164*> \verbatim
165*> ND is INTEGER
166*> The number of converged eigenvalues uncovered by this
167*> subroutine.
168*> \endverbatim
169*>
170*> \param[out] SH
171*> \verbatim
172*> SH is COMPLEX*16 array, dimension (KBOT)
173*> On output, approximate eigenvalues that may
174*> be used for shifts are stored in SH(KBOT-ND-NS+1)
175*> through SR(KBOT-ND). Converged eigenvalues are
176*> stored in SH(KBOT-ND+1) through SH(KBOT).
177*> \endverbatim
178*>
179*> \param[out] V
180*> \verbatim
181*> V is COMPLEX*16 array, dimension (LDV,NW)
182*> An NW-by-NW work array.
183*> \endverbatim
184*>
185*> \param[in] LDV
186*> \verbatim
187*> LDV is INTEGER
188*> The leading dimension of V just as declared in the
189*> calling subroutine. NW <= LDV
190*> \endverbatim
191*>
192*> \param[in] NH
193*> \verbatim
194*> NH is INTEGER
195*> The number of columns of T. NH >= NW.
196*> \endverbatim
197*>
198*> \param[out] T
199*> \verbatim
200*> T is COMPLEX*16 array, dimension (LDT,NW)
201*> \endverbatim
202*>
203*> \param[in] LDT
204*> \verbatim
205*> LDT is INTEGER
206*> The leading dimension of T just as declared in the
207*> calling subroutine. NW <= LDT
208*> \endverbatim
209*>
210*> \param[in] NV
211*> \verbatim
212*> NV is INTEGER
213*> The number of rows of work array WV available for
214*> workspace. NV >= NW.
215*> \endverbatim
216*>
217*> \param[out] WV
218*> \verbatim
219*> WV is COMPLEX*16 array, dimension (LDWV,NW)
220*> \endverbatim
221*>
222*> \param[in] LDWV
223*> \verbatim
224*> LDWV is INTEGER
225*> The leading dimension of W just as declared in the
226*> calling subroutine. NW <= LDV
227*> \endverbatim
228*>
229*> \param[out] WORK
230*> \verbatim
231*> WORK is COMPLEX*16 array, dimension (LWORK)
232*> On exit, WORK(1) is set to an estimate of the optimal value
233*> of LWORK for the given values of N, NW, KTOP and KBOT.
234*> \endverbatim
235*>
236*> \param[in] LWORK
237*> \verbatim
238*> LWORK is INTEGER
239*> The dimension of the work array WORK. LWORK = 2*NW
240*> suffices, but greater efficiency may result from larger
241*> values of LWORK.
242*>
243*> If LWORK = -1, then a workspace query is assumed; ZLAQR2
244*> only estimates the optimal workspace size for the given
245*> values of N, NW, KTOP and KBOT. The estimate is returned
246*> in WORK(1). No error message related to LWORK is issued
247*> by XERBLA. Neither H nor Z are accessed.
248*> \endverbatim
249*
250* Authors:
251* ========
252*
253*> \author Univ. of Tennessee
254*> \author Univ. of California Berkeley
255*> \author Univ. of Colorado Denver
256*> \author NAG Ltd.
257*
258*> \ingroup laqr2
259*
260*> \par Contributors:
261* ==================
262*>
263*> Karen Braman and Ralph Byers, Department of Mathematics,
264*> University of Kansas, USA
265*>
266* =====================================================================
267 SUBROUTINE zlaqr2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
268 $ IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
269 $ NV, WV, LDWV, WORK, LWORK )
270*
271* -- LAPACK auxiliary routine --
272* -- LAPACK is a software package provided by Univ. of Tennessee, --
273* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
274*
275* .. Scalar Arguments ..
276 INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
277 $ LDZ, LWORK, N, ND, NH, NS, NV, NW
278 LOGICAL WANTT, WANTZ
279* ..
280* .. Array Arguments ..
281 COMPLEX*16 H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
282 $ WORK( * ), WV( LDWV, * ), Z( LDZ, * )
283* ..
284*
285* ================================================================
286*
287* .. Parameters ..
288 COMPLEX*16 ZERO, ONE
289 PARAMETER ( ZERO = ( 0.0d0, 0.0d0 ),
290 $ one = ( 1.0d0, 0.0d0 ) )
291 DOUBLE PRECISION RZERO, RONE
292 PARAMETER ( RZERO = 0.0d0, rone = 1.0d0 )
293* ..
294* .. Local Scalars ..
295 COMPLEX*16 BETA, CDUM, S, TAU
296 DOUBLE PRECISION FOO, SAFMAX, SAFMIN, SMLNUM, ULP
297 INTEGER I, IFST, ILST, INFO, INFQR, J, JW, KCOL, KLN,
298 $ knt, krow, kwtop, ltop, lwk1, lwk2, lwkopt
299* ..
300* .. External Functions ..
301 DOUBLE PRECISION DLAMCH
302 EXTERNAL DLAMCH
303* ..
304* .. External Subroutines ..
305 EXTERNAL zcopy, zgehrd, zgemm, zlacpy, zlahqr,
307* ..
308* .. Intrinsic Functions ..
309 INTRINSIC abs, dble, dcmplx, dconjg, dimag, int, max, min
310* ..
311* .. Statement Functions ..
312 DOUBLE PRECISION CABS1
313* ..
314* .. Statement Function definitions ..
315 cabs1( cdum ) = abs( dble( cdum ) ) + abs( dimag( cdum ) )
316* ..
317* .. Executable Statements ..
318*
319* ==== Estimate optimal workspace. ====
320*
321 jw = min( nw, kbot-ktop+1 )
322 IF( jw.LE.2 ) THEN
323 lwkopt = 1
324 ELSE
325*
326* ==== Workspace query call to ZGEHRD ====
327*
328 CALL zgehrd( jw, 1, jw-1, t, ldt, work, work, -1, info )
329 lwk1 = int( work( 1 ) )
330*
331* ==== Workspace query call to ZUNMHR ====
332*
333 CALL zunmhr( 'R', 'N', jw, jw, 1, jw-1, t, ldt, work, v, ldv,
334 $ work, -1, info )
335 lwk2 = int( work( 1 ) )
336*
337* ==== Optimal workspace ====
338*
339 lwkopt = jw + max( lwk1, lwk2 )
340 END IF
341*
342* ==== Quick return in case of workspace query. ====
343*
344 IF( lwork.EQ.-1 ) THEN
345 work( 1 ) = dcmplx( lwkopt, 0 )
346 RETURN
347 END IF
348*
349* ==== Nothing to do ...
350* ... for an empty active block ... ====
351 ns = 0
352 nd = 0
353 work( 1 ) = one
354 IF( ktop.GT.kbot )
355 $ RETURN
356* ... nor for an empty deflation window. ====
357 IF( nw.LT.1 )
358 $ RETURN
359*
360* ==== Machine constants ====
361*
362 safmin = dlamch( 'SAFE MINIMUM' )
363 safmax = rone / safmin
364 ulp = dlamch( 'PRECISION' )
365 smlnum = safmin*( dble( n ) / ulp )
366*
367* ==== Setup deflation window ====
368*
369 jw = min( nw, kbot-ktop+1 )
370 kwtop = kbot - jw + 1
371 IF( kwtop.EQ.ktop ) THEN
372 s = zero
373 ELSE
374 s = h( kwtop, kwtop-1 )
375 END IF
376*
377 IF( kbot.EQ.kwtop ) THEN
378*
379* ==== 1-by-1 deflation window: not much to do ====
380*
381 sh( kwtop ) = h( kwtop, kwtop )
382 ns = 1
383 nd = 0
384 IF( cabs1( s ).LE.max( smlnum, ulp*cabs1( h( kwtop,
385 $ kwtop ) ) ) ) THEN
386 ns = 0
387 nd = 1
388 IF( kwtop.GT.ktop )
389 $ h( kwtop, kwtop-1 ) = zero
390 END IF
391 work( 1 ) = one
392 RETURN
393 END IF
394*
395* ==== Convert to spike-triangular form. (In case of a
396* . rare QR failure, this routine continues to do
397* . aggressive early deflation using that part of
398* . the deflation window that converged using INFQR
399* . here and there to keep track.) ====
400*
401 CALL zlacpy( 'U', jw, jw, h( kwtop, kwtop ), ldh, t, ldt )
402 CALL zcopy( jw-1, h( kwtop+1, kwtop ), ldh+1, t( 2, 1 ), ldt+1 )
403*
404 CALL zlaset( 'A', jw, jw, zero, one, v, ldv )
405 CALL zlahqr( .true., .true., jw, 1, jw, t, ldt, sh( kwtop ), 1,
406 $ jw, v, ldv, infqr )
407*
408* ==== Deflation detection loop ====
409*
410 ns = jw
411 ilst = infqr + 1
412 DO 10 knt = infqr + 1, jw
413*
414* ==== Small spike tip deflation test ====
415*
416 foo = cabs1( t( ns, ns ) )
417 IF( foo.EQ.rzero )
418 $ foo = cabs1( s )
419 IF( cabs1( s )*cabs1( v( 1, ns ) ).LE.max( smlnum, ulp*foo ) )
420 $ THEN
421*
422* ==== One more converged eigenvalue ====
423*
424 ns = ns - 1
425 ELSE
426*
427* ==== One undeflatable eigenvalue. Move it up out of the
428* . way. (ZTREXC can not fail in this case.) ====
429*
430 ifst = ns
431 CALL ztrexc( 'V', jw, t, ldt, v, ldv, ifst, ilst, info )
432 ilst = ilst + 1
433 END IF
434 10 CONTINUE
435*
436* ==== Return to Hessenberg form ====
437*
438 IF( ns.EQ.0 )
439 $ s = zero
440*
441 IF( ns.LT.jw ) THEN
442*
443* ==== sorting the diagonal of T improves accuracy for
444* . graded matrices. ====
445*
446 DO 30 i = infqr + 1, ns
447 ifst = i
448 DO 20 j = i + 1, ns
449 IF( cabs1( t( j, j ) ).GT.cabs1( t( ifst, ifst ) ) )
450 $ ifst = j
451 20 CONTINUE
452 ilst = i
453 IF( ifst.NE.ilst )
454 $ CALL ztrexc( 'V', jw, t, ldt, v, ldv, ifst, ilst, info )
455 30 CONTINUE
456 END IF
457*
458* ==== Restore shift/eigenvalue array from T ====
459*
460 DO 40 i = infqr + 1, jw
461 sh( kwtop+i-1 ) = t( i, i )
462 40 CONTINUE
463*
464*
465 IF( ns.LT.jw .OR. s.EQ.zero ) THEN
466 IF( ns.GT.1 .AND. s.NE.zero ) THEN
467*
468* ==== Reflect spike back into lower triangle ====
469*
470 CALL zcopy( ns, v, ldv, work, 1 )
471 DO 50 i = 1, ns
472 work( i ) = dconjg( work( i ) )
473 50 CONTINUE
474 beta = work( 1 )
475 CALL zlarfg( ns, beta, work( 2 ), 1, tau )
476 work( 1 ) = one
477*
478 CALL zlaset( 'L', jw-2, jw-2, zero, zero, t( 3, 1 ), ldt )
479*
480 CALL zlarf( 'L', ns, jw, work, 1, dconjg( tau ), t, ldt,
481 $ work( jw+1 ) )
482 CALL zlarf( 'R', ns, ns, work, 1, tau, t, ldt,
483 $ work( jw+1 ) )
484 CALL zlarf( 'R', jw, ns, work, 1, tau, v, ldv,
485 $ work( jw+1 ) )
486*
487 CALL zgehrd( jw, 1, ns, t, ldt, work, work( jw+1 ),
488 $ lwork-jw, info )
489 END IF
490*
491* ==== Copy updated reduced window into place ====
492*
493 IF( kwtop.GT.1 )
494 $ h( kwtop, kwtop-1 ) = s*dconjg( v( 1, 1 ) )
495 CALL zlacpy( 'U', jw, jw, t, ldt, h( kwtop, kwtop ), ldh )
496 CALL zcopy( jw-1, t( 2, 1 ), ldt+1, h( kwtop+1, kwtop ),
497 $ ldh+1 )
498*
499* ==== Accumulate orthogonal matrix in order update
500* . H and Z, if requested. ====
501*
502 IF( ns.GT.1 .AND. s.NE.zero )
503 $ CALL zunmhr( 'R', 'N', jw, ns, 1, ns, t, ldt, work, v, ldv,
504 $ work( jw+1 ), lwork-jw, info )
505*
506* ==== Update vertical slab in H ====
507*
508 IF( wantt ) THEN
509 ltop = 1
510 ELSE
511 ltop = ktop
512 END IF
513 DO 60 krow = ltop, kwtop - 1, nv
514 kln = min( nv, kwtop-krow )
515 CALL zgemm( 'N', 'N', kln, jw, jw, one, h( krow, kwtop ),
516 $ ldh, v, ldv, zero, wv, ldwv )
517 CALL zlacpy( 'A', kln, jw, wv, ldwv, h( krow, kwtop ), ldh )
518 60 CONTINUE
519*
520* ==== Update horizontal slab in H ====
521*
522 IF( wantt ) THEN
523 DO 70 kcol = kbot + 1, n, nh
524 kln = min( nh, n-kcol+1 )
525 CALL zgemm( 'C', 'N', jw, kln, jw, one, v, ldv,
526 $ h( kwtop, kcol ), ldh, zero, t, ldt )
527 CALL zlacpy( 'A', jw, kln, t, ldt, h( kwtop, kcol ),
528 $ ldh )
529 70 CONTINUE
530 END IF
531*
532* ==== Update vertical slab in Z ====
533*
534 IF( wantz ) THEN
535 DO 80 krow = iloz, ihiz, nv
536 kln = min( nv, ihiz-krow+1 )
537 CALL zgemm( 'N', 'N', kln, jw, jw, one, z( krow, kwtop ),
538 $ ldz, v, ldv, zero, wv, ldwv )
539 CALL zlacpy( 'A', kln, jw, wv, ldwv, z( krow, kwtop ),
540 $ ldz )
541 80 CONTINUE
542 END IF
543 END IF
544*
545* ==== Return the number of deflations ... ====
546*
547 nd = jw - ns
548*
549* ==== ... and the number of shifts. (Subtracting
550* . INFQR from the spike length takes care
551* . of the case of a rare QR failure while
552* . calculating eigenvalues of the deflation
553* . window.) ====
554*
555 ns = ns - infqr
556*
557* ==== Return optimal workspace. ====
558*
559 work( 1 ) = dcmplx( lwkopt, 0 )
560*
561* ==== End of ZLAQR2 ====
562*
563 END
subroutine zcopy(n, zx, incx, zy, incy)
ZCOPY
Definition zcopy.f:81
subroutine zgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)
ZGEHRD
Definition zgehrd.f:167
subroutine zgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
ZGEMM
Definition zgemm.f:188
subroutine zlacpy(uplo, m, n, a, lda, b, ldb)
ZLACPY copies all or part of one two-dimensional array to another.
Definition zlacpy.f:103
subroutine zlahqr(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, info)
ZLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix,...
Definition zlahqr.f:195
subroutine zlaqr2(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sh, v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)
ZLAQR2 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fu...
Definition zlaqr2.f:270
subroutine zlarf(side, m, n, v, incv, tau, c, ldc, work)
ZLARF applies an elementary reflector to a general rectangular matrix.
Definition zlarf.f:128
subroutine zlarfg(n, alpha, x, incx, tau)
ZLARFG generates an elementary reflector (Householder matrix).
Definition zlarfg.f:106
subroutine zlaset(uplo, m, n, alpha, beta, a, lda)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition zlaset.f:106
subroutine ztrexc(compq, n, t, ldt, q, ldq, ifst, ilst, info)
ZTREXC
Definition ztrexc.f:126
subroutine zunmhr(side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc, work, lwork, info)
ZUNMHR
Definition zunmhr.f:178