LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zgehrd.f
Go to the documentation of this file.
1*> \brief \b ZGEHRD
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZGEHRD + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgehrd.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgehrd.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgehrd.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE ZGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
20*
21* .. Scalar Arguments ..
22* INTEGER IHI, ILO, INFO, LDA, LWORK, N
23* ..
24* .. Array Arguments ..
25* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> ZGEHRD reduces a complex general matrix A to upper Hessenberg form H by
35*> an unitary similarity transformation: Q**H * A * Q = H .
36*> \endverbatim
37*
38* Arguments:
39* ==========
40*
41*> \param[in] N
42*> \verbatim
43*> N is INTEGER
44*> The order of the matrix A. N >= 0.
45*> \endverbatim
46*>
47*> \param[in] ILO
48*> \verbatim
49*> ILO is INTEGER
50*> \endverbatim
51*>
52*> \param[in] IHI
53*> \verbatim
54*> IHI is INTEGER
55*>
56*> It is assumed that A is already upper triangular in rows
57*> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
58*> set by a previous call to ZGEBAL; otherwise they should be
59*> set to 1 and N respectively. See Further Details.
60*> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
61*> \endverbatim
62*>
63*> \param[in,out] A
64*> \verbatim
65*> A is COMPLEX*16 array, dimension (LDA,N)
66*> On entry, the N-by-N general matrix to be reduced.
67*> On exit, the upper triangle and the first subdiagonal of A
68*> are overwritten with the upper Hessenberg matrix H, and the
69*> elements below the first subdiagonal, with the array TAU,
70*> represent the unitary matrix Q as a product of elementary
71*> reflectors. See Further Details.
72*> \endverbatim
73*>
74*> \param[in] LDA
75*> \verbatim
76*> LDA is INTEGER
77*> The leading dimension of the array A. LDA >= max(1,N).
78*> \endverbatim
79*>
80*> \param[out] TAU
81*> \verbatim
82*> TAU is COMPLEX*16 array, dimension (N-1)
83*> The scalar factors of the elementary reflectors (see Further
84*> Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
85*> zero.
86*> \endverbatim
87*>
88*> \param[out] WORK
89*> \verbatim
90*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
91*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
92*> \endverbatim
93*>
94*> \param[in] LWORK
95*> \verbatim
96*> LWORK is INTEGER
97*> The length of the array WORK. LWORK >= max(1,N).
98*> For good performance, LWORK should generally be larger.
99*>
100*> If LWORK = -1, then a workspace query is assumed; the routine
101*> only calculates the optimal size of the WORK array, returns
102*> this value as the first entry of the WORK array, and no error
103*> message related to LWORK is issued by XERBLA.
104*> \endverbatim
105*>
106*> \param[out] INFO
107*> \verbatim
108*> INFO is INTEGER
109*> = 0: successful exit
110*> < 0: if INFO = -i, the i-th argument had an illegal value.
111*> \endverbatim
112*
113* Authors:
114* ========
115*
116*> \author Univ. of Tennessee
117*> \author Univ. of California Berkeley
118*> \author Univ. of Colorado Denver
119*> \author NAG Ltd.
120*
121*> \ingroup gehrd
122*
123*> \par Further Details:
124* =====================
125*>
126*> \verbatim
127*>
128*> The matrix Q is represented as a product of (ihi-ilo) elementary
129*> reflectors
130*>
131*> Q = H(ilo) H(ilo+1) . . . H(ihi-1).
132*>
133*> Each H(i) has the form
134*>
135*> H(i) = I - tau * v * v**H
136*>
137*> where tau is a complex scalar, and v is a complex vector with
138*> v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
139*> exit in A(i+2:ihi,i), and tau in TAU(i).
140*>
141*> The contents of A are illustrated by the following example, with
142*> n = 7, ilo = 2 and ihi = 6:
143*>
144*> on entry, on exit,
145*>
146*> ( a a a a a a a ) ( a a h h h h a )
147*> ( a a a a a a ) ( a h h h h a )
148*> ( a a a a a a ) ( h h h h h h )
149*> ( a a a a a a ) ( v2 h h h h h )
150*> ( a a a a a a ) ( v2 v3 h h h h )
151*> ( a a a a a a ) ( v2 v3 v4 h h h )
152*> ( a ) ( a )
153*>
154*> where a denotes an element of the original matrix A, h denotes a
155*> modified element of the upper Hessenberg matrix H, and vi denotes an
156*> element of the vector defining H(i).
157*>
158*> This file is a slight modification of LAPACK-3.0's ZGEHRD
159*> subroutine incorporating improvements proposed by Quintana-Orti and
160*> Van de Geijn (2006). (See ZLAHR2.)
161*> \endverbatim
162*>
163* =====================================================================
164 SUBROUTINE zgehrd( N, ILO, IHI, A, LDA, TAU, WORK, LWORK,
165 $ INFO )
166*
167* -- LAPACK computational routine --
168* -- LAPACK is a software package provided by Univ. of Tennessee, --
169* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
170*
171* .. Scalar Arguments ..
172 INTEGER IHI, ILO, INFO, LDA, LWORK, N
173* ..
174* .. Array Arguments ..
175 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
176* ..
177*
178* =====================================================================
179*
180* .. Parameters ..
181 INTEGER NBMAX, LDT, TSIZE
182 parameter( nbmax = 64, ldt = nbmax+1,
183 $ tsize = ldt*nbmax )
184 COMPLEX*16 ZERO, ONE
185 parameter( zero = ( 0.0d+0, 0.0d+0 ),
186 $ one = ( 1.0d+0, 0.0d+0 ) )
187* ..
188* .. Local Scalars ..
189 LOGICAL LQUERY
190 INTEGER I, IB, IINFO, IWT, J, LDWORK, LWKOPT, NB,
191 $ nbmin, nh, nx
192 COMPLEX*16 EI
193* ..
194* .. External Subroutines ..
195 EXTERNAL zaxpy, zgehd2, zgemm, zlahr2, zlarfb,
196 $ ztrmm,
197 $ xerbla
198* ..
199* .. Intrinsic Functions ..
200 INTRINSIC max, min
201* ..
202* .. External Functions ..
203 INTEGER ILAENV
204 EXTERNAL ilaenv
205* ..
206* .. Executable Statements ..
207*
208* Test the input parameters
209*
210 info = 0
211 lquery = ( lwork.EQ.-1 )
212 IF( n.LT.0 ) THEN
213 info = -1
214 ELSE IF( ilo.LT.1 .OR. ilo.GT.max( 1, n ) ) THEN
215 info = -2
216 ELSE IF( ihi.LT.min( ilo, n ) .OR. ihi.GT.n ) THEN
217 info = -3
218 ELSE IF( lda.LT.max( 1, n ) ) THEN
219 info = -5
220 ELSE IF( lwork.LT.max( 1, n ) .AND. .NOT.lquery ) THEN
221 info = -8
222 END IF
223*
224 nh = ihi - ilo + 1
225 IF( info.EQ.0 ) THEN
226*
227* Compute the workspace requirements
228*
229 IF( nh.LE.1 ) THEN
230 lwkopt = 1
231 ELSE
232 nb = min( nbmax, ilaenv( 1, 'ZGEHRD', ' ', n, ilo, ihi,
233 $ -1 ) )
234 lwkopt = n*nb + tsize
235 END IF
236 work( 1 ) = lwkopt
237 ENDIF
238*
239 IF( info.NE.0 ) THEN
240 CALL xerbla( 'ZGEHRD', -info )
241 RETURN
242 ELSE IF( lquery ) THEN
243 RETURN
244 END IF
245*
246* Set elements 1:ILO-1 and IHI:N-1 of TAU to zero
247*
248 DO 10 i = 1, ilo - 1
249 tau( i ) = zero
250 10 CONTINUE
251 DO 20 i = max( 1, ihi ), n - 1
252 tau( i ) = zero
253 20 CONTINUE
254*
255* Quick return if possible
256*
257 IF( nh.LE.1 ) THEN
258 work( 1 ) = 1
259 RETURN
260 END IF
261*
262* Determine the block size
263*
264 nb = min( nbmax, ilaenv( 1, 'ZGEHRD', ' ', n, ilo, ihi, -1 ) )
265 nbmin = 2
266 IF( nb.GT.1 .AND. nb.LT.nh ) THEN
267*
268* Determine when to cross over from blocked to unblocked code
269* (last block is always handled by unblocked code)
270*
271 nx = max( nb, ilaenv( 3, 'ZGEHRD', ' ', n, ilo, ihi, -1 ) )
272 IF( nx.LT.nh ) THEN
273*
274* Determine if workspace is large enough for blocked code
275*
276 IF( lwork.LT.lwkopt ) THEN
277*
278* Not enough workspace to use optimal NB: determine the
279* minimum value of NB, and reduce NB or force use of
280* unblocked code
281*
282 nbmin = max( 2, ilaenv( 2, 'ZGEHRD', ' ', n, ilo, ihi,
283 $ -1 ) )
284 IF( lwork.GE.(n*nbmin + tsize) ) THEN
285 nb = (lwork-tsize) / n
286 ELSE
287 nb = 1
288 END IF
289 END IF
290 END IF
291 END IF
292 ldwork = n
293*
294 IF( nb.LT.nbmin .OR. nb.GE.nh ) THEN
295*
296* Use unblocked code below
297*
298 i = ilo
299*
300 ELSE
301*
302* Use blocked code
303*
304 iwt = 1 + n*nb
305 DO 40 i = ilo, ihi - 1 - nx, nb
306 ib = min( nb, ihi-i )
307*
308* Reduce columns i:i+ib-1 to Hessenberg form, returning the
309* matrices V and T of the block reflector H = I - V*T*V**H
310* which performs the reduction, and also the matrix Y = A*V*T
311*
312 CALL zlahr2( ihi, i, ib, a( 1, i ), lda, tau( i ),
313 $ work( iwt ), ldt, work, ldwork )
314*
315* Apply the block reflector H to A(1:ihi,i+ib:ihi) from the
316* right, computing A := A - Y * V**H. V(i+ib,ib-1) must be set
317* to 1
318*
319 ei = a( i+ib, i+ib-1 )
320 a( i+ib, i+ib-1 ) = one
321 CALL zgemm( 'No transpose', 'Conjugate transpose',
322 $ ihi, ihi-i-ib+1,
323 $ ib, -one, work, ldwork, a( i+ib, i ), lda, one,
324 $ a( 1, i+ib ), lda )
325 a( i+ib, i+ib-1 ) = ei
326*
327* Apply the block reflector H to A(1:i,i+1:i+ib-1) from the
328* right
329*
330 CALL ztrmm( 'Right', 'Lower', 'Conjugate transpose',
331 $ 'Unit', i, ib-1,
332 $ one, a( i+1, i ), lda, work, ldwork )
333 DO 30 j = 0, ib-2
334 CALL zaxpy( i, -one, work( ldwork*j+1 ), 1,
335 $ a( 1, i+j+1 ), 1 )
336 30 CONTINUE
337*
338* Apply the block reflector H to A(i+1:ihi,i+ib:n) from the
339* left
340*
341 CALL zlarfb( 'Left', 'Conjugate transpose', 'Forward',
342 $ 'Columnwise',
343 $ ihi-i, n-i-ib+1, ib, a( i+1, i ), lda,
344 $ work( iwt ), ldt, a( i+1, i+ib ), lda,
345 $ work, ldwork )
346 40 CONTINUE
347 END IF
348*
349* Use unblocked code to reduce the rest of the matrix
350*
351 CALL zgehd2( n, i, ihi, a, lda, tau, work, iinfo )
352 work( 1 ) = lwkopt
353*
354 RETURN
355*
356* End of ZGEHRD
357*
358 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zaxpy(n, za, zx, incx, zy, incy)
ZAXPY
Definition zaxpy.f:88
subroutine zgehd2(n, ilo, ihi, a, lda, tau, work, info)
ZGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.
Definition zgehd2.f:147
subroutine zgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)
ZGEHRD
Definition zgehrd.f:166
subroutine zgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
ZGEMM
Definition zgemm.f:188
subroutine zlahr2(n, k, nb, a, lda, tau, t, ldt, y, ldy)
ZLAHR2 reduces the specified number of first columns of a general rectangular matrix A so that elemen...
Definition zlahr2.f:179
subroutine zlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
Definition zlarfb.f:195
subroutine ztrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
ZTRMM
Definition ztrmm.f:177