LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ zgehd2()

subroutine zgehd2 ( integer n,
integer ilo,
integer ihi,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( * ) tau,
complex*16, dimension( * ) work,
integer info )

ZGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.

Download ZGEHD2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> ZGEHD2 reduces a complex general matrix A to upper Hessenberg form H !> by a unitary similarity transformation: Q**H * A * Q = H . !>
Parameters
[in]N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
[in]ILO
!> ILO is INTEGER !>
[in]IHI
!> IHI is INTEGER !> !> It is assumed that A is already upper triangular in rows !> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally !> set by a previous call to ZGEBAL; otherwise they should be !> set to 1 and N respectively. See Further Details. !> 1 <= ILO <= IHI <= max(1,N). !>
[in,out]A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the n by n general matrix to be reduced. !> On exit, the upper triangle and the first subdiagonal of A !> are overwritten with the upper Hessenberg matrix H, and the !> elements below the first subdiagonal, with the array TAU, !> represent the unitary matrix Q as a product of elementary !> reflectors. See Further Details. !>
[in]LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
[out]TAU
!> TAU is COMPLEX*16 array, dimension (N-1) !> The scalar factors of the elementary reflectors (see Further !> Details). !>
[out]WORK
!> WORK is COMPLEX*16 array, dimension (N) !>
[out]INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The matrix Q is represented as a product of (ihi-ilo) elementary !> reflectors !> !> Q = H(ilo) H(ilo+1) . . . H(ihi-1). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on !> exit in A(i+2:ihi,i), and tau in TAU(i). !> !> The contents of A are illustrated by the following example, with !> n = 7, ilo = 2 and ihi = 6: !> !> on entry, on exit, !> !> ( a a a a a a a ) ( a a h h h h a ) !> ( a a a a a a ) ( a h h h h a ) !> ( a a a a a a ) ( h h h h h h ) !> ( a a a a a a ) ( v2 h h h h h ) !> ( a a a a a a ) ( v2 v3 h h h h ) !> ( a a a a a a ) ( v2 v3 v4 h h h ) !> ( a ) ( a ) !> !> where a denotes an element of the original matrix A, h denotes a !> modified element of the upper Hessenberg matrix H, and vi denotes an !> element of the vector defining H(i). !>

Definition at line 146 of file zgehd2.f.

147*
148* -- LAPACK computational routine --
149* -- LAPACK is a software package provided by Univ. of Tennessee, --
150* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
151*
152* .. Scalar Arguments ..
153 INTEGER IHI, ILO, INFO, LDA, N
154* ..
155* .. Array Arguments ..
156 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
157* ..
158*
159* =====================================================================
160*
161* .. Parameters ..
162 COMPLEX*16 ONE
163 parameter( one = ( 1.0d+0, 0.0d+0 ) )
164* ..
165* .. Local Scalars ..
166 INTEGER I
167* ..
168* .. External Subroutines ..
169 EXTERNAL xerbla, zlarf1f, zlarfg
170* ..
171* .. Intrinsic Functions ..
172 INTRINSIC dconjg, max, min
173* ..
174* .. Executable Statements ..
175*
176* Test the input parameters
177*
178 info = 0
179 IF( n.LT.0 ) THEN
180 info = -1
181 ELSE IF( ilo.LT.1 .OR. ilo.GT.max( 1, n ) ) THEN
182 info = -2
183 ELSE IF( ihi.LT.min( ilo, n ) .OR. ihi.GT.n ) THEN
184 info = -3
185 ELSE IF( lda.LT.max( 1, n ) ) THEN
186 info = -5
187 END IF
188 IF( info.NE.0 ) THEN
189 CALL xerbla( 'ZGEHD2', -info )
190 RETURN
191 END IF
192*
193 DO 10 i = ilo, ihi - 1
194*
195* Compute elementary reflector H(i) to annihilate A(i+2:ihi,i)
196*
197 CALL zlarfg( ihi-i, a( i+1, i ), a( min( i+2, n ), i ), 1,
198 $ tau( i ) )
199*
200* Apply H(i) to A(1:ihi,i+1:ihi) from the right
201*
202 CALL zlarf1f( 'Right', ihi, ihi-i, a( i+1, i ), 1, tau( i ),
203 $ a( 1, i+1 ), lda, work )
204*
205* Apply H(i)**H to A(i+1:ihi,i+1:n) from the left
206*
207 CALL zlarf1f( 'Left', ihi-i, n-i, a( i+1, i ), 1,
208 $ conjg( tau( i ) ), a( i+1, i+1 ), lda, work )
209*
210 10 CONTINUE
211*
212 RETURN
213*
214* End of ZGEHD2
215*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zlarf1f(side, m, n, v, incv, tau, c, ldc, work)
ZLARF1F applies an elementary reflector to a general rectangular
Definition zlarf1f.f:157
subroutine zlarfg(n, alpha, x, incx, tau)
ZLARFG generates an elementary reflector (Householder matrix).
Definition zlarfg.f:104
Here is the call graph for this function:
Here is the caller graph for this function: