LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zgehd2.f
Go to the documentation of this file.
1*> \brief \b ZGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZGEHD2 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgehd2.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgehd2.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgehd2.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE ZGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )
20*
21* .. Scalar Arguments ..
22* INTEGER IHI, ILO, INFO, LDA, N
23* ..
24* .. Array Arguments ..
25* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> ZGEHD2 reduces a complex general matrix A to upper Hessenberg form H
35*> by a unitary similarity transformation: Q**H * A * Q = H .
36*> \endverbatim
37*
38* Arguments:
39* ==========
40*
41*> \param[in] N
42*> \verbatim
43*> N is INTEGER
44*> The order of the matrix A. N >= 0.
45*> \endverbatim
46*>
47*> \param[in] ILO
48*> \verbatim
49*> ILO is INTEGER
50*> \endverbatim
51*>
52*> \param[in] IHI
53*> \verbatim
54*> IHI is INTEGER
55*>
56*> It is assumed that A is already upper triangular in rows
57*> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
58*> set by a previous call to ZGEBAL; otherwise they should be
59*> set to 1 and N respectively. See Further Details.
60*> 1 <= ILO <= IHI <= max(1,N).
61*> \endverbatim
62*>
63*> \param[in,out] A
64*> \verbatim
65*> A is COMPLEX*16 array, dimension (LDA,N)
66*> On entry, the n by n general matrix to be reduced.
67*> On exit, the upper triangle and the first subdiagonal of A
68*> are overwritten with the upper Hessenberg matrix H, and the
69*> elements below the first subdiagonal, with the array TAU,
70*> represent the unitary matrix Q as a product of elementary
71*> reflectors. See Further Details.
72*> \endverbatim
73*>
74*> \param[in] LDA
75*> \verbatim
76*> LDA is INTEGER
77*> The leading dimension of the array A. LDA >= max(1,N).
78*> \endverbatim
79*>
80*> \param[out] TAU
81*> \verbatim
82*> TAU is COMPLEX*16 array, dimension (N-1)
83*> The scalar factors of the elementary reflectors (see Further
84*> Details).
85*> \endverbatim
86*>
87*> \param[out] WORK
88*> \verbatim
89*> WORK is COMPLEX*16 array, dimension (N)
90*> \endverbatim
91*>
92*> \param[out] INFO
93*> \verbatim
94*> INFO is INTEGER
95*> = 0: successful exit
96*> < 0: if INFO = -i, the i-th argument had an illegal value.
97*> \endverbatim
98*
99* Authors:
100* ========
101*
102*> \author Univ. of Tennessee
103*> \author Univ. of California Berkeley
104*> \author Univ. of Colorado Denver
105*> \author NAG Ltd.
106*
107*> \ingroup gehd2
108*
109*> \par Further Details:
110* =====================
111*>
112*> \verbatim
113*>
114*> The matrix Q is represented as a product of (ihi-ilo) elementary
115*> reflectors
116*>
117*> Q = H(ilo) H(ilo+1) . . . H(ihi-1).
118*>
119*> Each H(i) has the form
120*>
121*> H(i) = I - tau * v * v**H
122*>
123*> where tau is a complex scalar, and v is a complex vector with
124*> v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
125*> exit in A(i+2:ihi,i), and tau in TAU(i).
126*>
127*> The contents of A are illustrated by the following example, with
128*> n = 7, ilo = 2 and ihi = 6:
129*>
130*> on entry, on exit,
131*>
132*> ( a a a a a a a ) ( a a h h h h a )
133*> ( a a a a a a ) ( a h h h h a )
134*> ( a a a a a a ) ( h h h h h h )
135*> ( a a a a a a ) ( v2 h h h h h )
136*> ( a a a a a a ) ( v2 v3 h h h h )
137*> ( a a a a a a ) ( v2 v3 v4 h h h )
138*> ( a ) ( a )
139*>
140*> where a denotes an element of the original matrix A, h denotes a
141*> modified element of the upper Hessenberg matrix H, and vi denotes an
142*> element of the vector defining H(i).
143*> \endverbatim
144*>
145* =====================================================================
146 SUBROUTINE zgehd2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )
147*
148* -- LAPACK computational routine --
149* -- LAPACK is a software package provided by Univ. of Tennessee, --
150* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
151*
152* .. Scalar Arguments ..
153 INTEGER IHI, ILO, INFO, LDA, N
154* ..
155* .. Array Arguments ..
156 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
157* ..
158*
159* =====================================================================
160*
161* .. Parameters ..
162 COMPLEX*16 ONE
163 parameter( one = ( 1.0d+0, 0.0d+0 ) )
164* ..
165* .. Local Scalars ..
166 INTEGER I
167* ..
168* .. External Subroutines ..
169 EXTERNAL xerbla, zlarf1f, zlarfg
170* ..
171* .. Intrinsic Functions ..
172 INTRINSIC dconjg, max, min
173* ..
174* .. Executable Statements ..
175*
176* Test the input parameters
177*
178 info = 0
179 IF( n.LT.0 ) THEN
180 info = -1
181 ELSE IF( ilo.LT.1 .OR. ilo.GT.max( 1, n ) ) THEN
182 info = -2
183 ELSE IF( ihi.LT.min( ilo, n ) .OR. ihi.GT.n ) THEN
184 info = -3
185 ELSE IF( lda.LT.max( 1, n ) ) THEN
186 info = -5
187 END IF
188 IF( info.NE.0 ) THEN
189 CALL xerbla( 'ZGEHD2', -info )
190 RETURN
191 END IF
192*
193 DO 10 i = ilo, ihi - 1
194*
195* Compute elementary reflector H(i) to annihilate A(i+2:ihi,i)
196*
197 CALL zlarfg( ihi-i, a( i+1, i ), a( min( i+2, n ), i ), 1,
198 $ tau( i ) )
199*
200* Apply H(i) to A(1:ihi,i+1:ihi) from the right
201*
202 CALL zlarf1f( 'Right', ihi, ihi-i, a( i+1, i ), 1, tau( i ),
203 $ a( 1, i+1 ), lda, work )
204*
205* Apply H(i)**H to A(i+1:ihi,i+1:n) from the left
206*
207 CALL zlarf1f( 'Left', ihi-i, n-i, a( i+1, i ), 1,
208 $ conjg( tau( i ) ), a( i+1, i+1 ), lda, work )
209*
210 10 CONTINUE
211*
212 RETURN
213*
214* End of ZGEHD2
215*
216 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zgehd2(n, ilo, ihi, a, lda, tau, work, info)
ZGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.
Definition zgehd2.f:147
subroutine zlarf1f(side, m, n, v, incv, tau, c, ldc, work)
ZLARF1F applies an elementary reflector to a general rectangular
Definition zlarf1f.f:157
subroutine zlarfg(n, alpha, x, incx, tau)
ZLARFG generates an elementary reflector (Householder matrix).
Definition zlarfg.f:104