LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
sorg2l.f
Go to the documentation of this file.
1*> \brief \b SORG2L generates all or part of the orthogonal matrix Q from a QL factorization determined by sgeqlf (unblocked algorithm).
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download SORG2L + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorg2l.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorg2l.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorg2l.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE SORG2L( M, N, K, A, LDA, TAU, WORK, INFO )
20*
21* .. Scalar Arguments ..
22* INTEGER INFO, K, LDA, M, N
23* ..
24* .. Array Arguments ..
25* REAL A( LDA, * ), TAU( * ), WORK( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> SORG2L generates an m by n real matrix Q with orthonormal columns,
35*> which is defined as the last n columns of a product of k elementary
36*> reflectors of order m
37*>
38*> Q = H(k) . . . H(2) H(1)
39*>
40*> as returned by SGEQLF.
41*> \endverbatim
42*
43* Arguments:
44* ==========
45*
46*> \param[in] M
47*> \verbatim
48*> M is INTEGER
49*> The number of rows of the matrix Q. M >= 0.
50*> \endverbatim
51*>
52*> \param[in] N
53*> \verbatim
54*> N is INTEGER
55*> The number of columns of the matrix Q. M >= N >= 0.
56*> \endverbatim
57*>
58*> \param[in] K
59*> \verbatim
60*> K is INTEGER
61*> The number of elementary reflectors whose product defines the
62*> matrix Q. N >= K >= 0.
63*> \endverbatim
64*>
65*> \param[in,out] A
66*> \verbatim
67*> A is REAL array, dimension (LDA,N)
68*> On entry, the (n-k+i)-th column must contain the vector which
69*> defines the elementary reflector H(i), for i = 1,2,...,k, as
70*> returned by SGEQLF in the last k columns of its array
71*> argument A.
72*> On exit, the m by n matrix Q.
73*> \endverbatim
74*>
75*> \param[in] LDA
76*> \verbatim
77*> LDA is INTEGER
78*> The first dimension of the array A. LDA >= max(1,M).
79*> \endverbatim
80*>
81*> \param[in] TAU
82*> \verbatim
83*> TAU is REAL array, dimension (K)
84*> TAU(i) must contain the scalar factor of the elementary
85*> reflector H(i), as returned by SGEQLF.
86*> \endverbatim
87*>
88*> \param[out] WORK
89*> \verbatim
90*> WORK is REAL array, dimension (N)
91*> \endverbatim
92*>
93*> \param[out] INFO
94*> \verbatim
95*> INFO is INTEGER
96*> = 0: successful exit
97*> < 0: if INFO = -i, the i-th argument has an illegal value
98*> \endverbatim
99*
100* Authors:
101* ========
102*
103*> \author Univ. of Tennessee
104*> \author Univ. of California Berkeley
105*> \author Univ. of Colorado Denver
106*> \author NAG Ltd.
107*
108*> \ingroup ung2l
109*
110* =====================================================================
111 SUBROUTINE sorg2l( M, N, K, A, LDA, TAU, WORK, INFO )
112*
113* -- LAPACK computational routine --
114* -- LAPACK is a software package provided by Univ. of Tennessee, --
115* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
116*
117* .. Scalar Arguments ..
118 INTEGER INFO, K, LDA, M, N
119* ..
120* .. Array Arguments ..
121 REAL A( LDA, * ), TAU( * ), WORK( * )
122* ..
123*
124* =====================================================================
125*
126* .. Parameters ..
127 REAL ONE, ZERO
128 parameter( one = 1.0e+0, zero = 0.0e+0 )
129* ..
130* .. Local Scalars ..
131 INTEGER I, II, J, L
132* ..
133* .. External Subroutines ..
134 EXTERNAL slarf1l, sscal, xerbla
135* ..
136* .. Intrinsic Functions ..
137 INTRINSIC max
138* ..
139* .. Executable Statements ..
140*
141* Test the input arguments
142*
143 info = 0
144 IF( m.LT.0 ) THEN
145 info = -1
146 ELSE IF( n.LT.0 .OR. n.GT.m ) THEN
147 info = -2
148 ELSE IF( k.LT.0 .OR. k.GT.n ) THEN
149 info = -3
150 ELSE IF( lda.LT.max( 1, m ) ) THEN
151 info = -5
152 END IF
153 IF( info.NE.0 ) THEN
154 CALL xerbla( 'SORG2L', -info )
155 RETURN
156 END IF
157*
158* Quick return if possible
159*
160 IF( n.LE.0 )
161 $ RETURN
162*
163* Initialise columns 1:n-k to columns of the unit matrix
164*
165 DO 20 j = 1, n - k
166 DO 10 l = 1, m
167 a( l, j ) = zero
168 10 CONTINUE
169 a( m-n+j, j ) = one
170 20 CONTINUE
171*
172 DO 40 i = 1, k
173 ii = n - k + i
174*
175* Apply H(i) to A(1:m-k+i,1:n-k+i) from the left
176*
177 a( m-n+ii, ii ) = one
178 CALL slarf1l( 'Left', m-n+ii, ii-1, a( 1, ii ), 1, tau( i ),
179 $ a, lda, work )
180 CALL sscal( m-n+ii-1, -tau( i ), a( 1, ii ), 1 )
181 a( m-n+ii, ii ) = one - tau( i )
182*
183* Set A(m-k+i+1:m,n-k+i) to zero
184*
185 DO 30 l = m - n + ii + 1, m
186 a( l, ii ) = zero
187 30 CONTINUE
188 40 CONTINUE
189 RETURN
190*
191* End of SORG2L
192*
193 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
subroutine sorg2l(m, n, k, a, lda, tau, work, info)
SORG2L generates all or part of the orthogonal matrix Q from a QL factorization determined by sgeqlf ...
Definition sorg2l.f:112
subroutine slarf1l(side, m, n, v, incv, tau, c, ldc, work)
SLARF1L applies an elementary reflector to a general rectangular
Definition slarf1l.f:125