LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sorg2l()

subroutine sorg2l ( integer m,
integer n,
integer k,
real, dimension( lda, * ) a,
integer lda,
real, dimension( * ) tau,
real, dimension( * ) work,
integer info )

SORG2L generates all or part of the orthogonal matrix Q from a QL factorization determined by sgeqlf (unblocked algorithm).

Download SORG2L + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SORG2L generates an m by n real matrix Q with orthonormal columns,
!> which is defined as the last n columns of a product of k elementary
!> reflectors of order m
!>
!>       Q  =  H(k) . . . H(2) H(1)
!>
!> as returned by SGEQLF.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix Q. M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix Q. M >= N >= 0.
!> 
[in]K
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines the
!>          matrix Q. N >= K >= 0.
!> 
[in,out]A
!>          A is REAL array, dimension (LDA,N)
!>          On entry, the (n-k+i)-th column must contain the vector which
!>          defines the elementary reflector H(i), for i = 1,2,...,k, as
!>          returned by SGEQLF in the last k columns of its array
!>          argument A.
!>          On exit, the m by n matrix Q.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The first dimension of the array A. LDA >= max(1,M).
!> 
[in]TAU
!>          TAU is REAL array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by SGEQLF.
!> 
[out]WORK
!>          WORK is REAL array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument has an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 111 of file sorg2l.f.

112*
113* -- LAPACK computational routine --
114* -- LAPACK is a software package provided by Univ. of Tennessee, --
115* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
116*
117* .. Scalar Arguments ..
118 INTEGER INFO, K, LDA, M, N
119* ..
120* .. Array Arguments ..
121 REAL A( LDA, * ), TAU( * ), WORK( * )
122* ..
123*
124* =====================================================================
125*
126* .. Parameters ..
127 REAL ONE, ZERO
128 parameter( one = 1.0e+0, zero = 0.0e+0 )
129* ..
130* .. Local Scalars ..
131 INTEGER I, II, J, L
132* ..
133* .. External Subroutines ..
134 EXTERNAL slarf1l, sscal, xerbla
135* ..
136* .. Intrinsic Functions ..
137 INTRINSIC max
138* ..
139* .. Executable Statements ..
140*
141* Test the input arguments
142*
143 info = 0
144 IF( m.LT.0 ) THEN
145 info = -1
146 ELSE IF( n.LT.0 .OR. n.GT.m ) THEN
147 info = -2
148 ELSE IF( k.LT.0 .OR. k.GT.n ) THEN
149 info = -3
150 ELSE IF( lda.LT.max( 1, m ) ) THEN
151 info = -5
152 END IF
153 IF( info.NE.0 ) THEN
154 CALL xerbla( 'SORG2L', -info )
155 RETURN
156 END IF
157*
158* Quick return if possible
159*
160 IF( n.LE.0 )
161 $ RETURN
162*
163* Initialise columns 1:n-k to columns of the unit matrix
164*
165 DO 20 j = 1, n - k
166 DO 10 l = 1, m
167 a( l, j ) = zero
168 10 CONTINUE
169 a( m-n+j, j ) = one
170 20 CONTINUE
171*
172 DO 40 i = 1, k
173 ii = n - k + i
174*
175* Apply H(i) to A(1:m-k+i,1:n-k+i) from the left
176*
177 a( m-n+ii, ii ) = one
178 CALL slarf1l( 'Left', m-n+ii, ii-1, a( 1, ii ), 1, tau( i ),
179 $ a, lda, work )
180 CALL sscal( m-n+ii-1, -tau( i ), a( 1, ii ), 1 )
181 a( m-n+ii, ii ) = one - tau( i )
182*
183* Set A(m-k+i+1:m,n-k+i) to zero
184*
185 DO 30 l = m - n + ii + 1, m
186 a( l, ii ) = zero
187 30 CONTINUE
188 40 CONTINUE
189 RETURN
190*
191* End of SORG2L
192*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
subroutine slarf1l(side, m, n, v, incv, tau, c, ldc, work)
SLARF1L applies an elementary reflector to a general rectangular
Definition slarf1l.f:125
Here is the call graph for this function:
Here is the caller graph for this function: