LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cdrvsy()

subroutine cdrvsy ( logical, dimension( * ) dotype,
integer nn,
integer, dimension( * ) nval,
integer nrhs,
real thresh,
logical tsterr,
integer nmax,
complex, dimension( * ) a,
complex, dimension( * ) afac,
complex, dimension( * ) ainv,
complex, dimension( * ) b,
complex, dimension( * ) x,
complex, dimension( * ) xact,
complex, dimension( * ) work,
real, dimension( * ) rwork,
integer, dimension( * ) iwork,
integer nout )

CDRVSY

Purpose:
!>
!> CDRVSY tests the driver routines CSYSV and -SVX.
!> 
Parameters
[in]DOTYPE
!>          DOTYPE is LOGICAL array, dimension (NTYPES)
!>          The matrix types to be used for testing.  Matrices of type j
!>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
!>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
!> 
[in]NN
!>          NN is INTEGER
!>          The number of values of N contained in the vector NVAL.
!> 
[in]NVAL
!>          NVAL is INTEGER array, dimension (NN)
!>          The values of the matrix dimension N.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand side vectors to be generated for
!>          each linear system.
!> 
[in]THRESH
!>          THRESH is REAL
!>          The threshold value for the test ratios.  A result is
!>          included in the output file if RESULT >= THRESH.  To have
!>          every test ratio printed, use THRESH = 0.
!> 
[in]TSTERR
!>          TSTERR is LOGICAL
!>          Flag that indicates whether error exits are to be tested.
!> 
[in]NMAX
!>          NMAX is INTEGER
!>          The maximum value permitted for N, used in dimensioning the
!>          work arrays.
!> 
[out]A
!>          A is COMPLEX array, dimension (NMAX*NMAX)
!> 
[out]AFAC
!>          AFAC is COMPLEX array, dimension (NMAX*NMAX)
!> 
[out]AINV
!>          AINV is COMPLEX array, dimension (NMAX*NMAX)
!> 
[out]B
!>          B is COMPLEX array, dimension (NMAX*NRHS)
!> 
[out]X
!>          X is COMPLEX array, dimension (NMAX*NRHS)
!> 
[out]XACT
!>          XACT is COMPLEX array, dimension (NMAX*NRHS)
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (NMAX*max(2,NRHS))
!> 
[out]RWORK
!>          RWORK is REAL array, dimension (NMAX+2*NRHS)
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (NMAX)
!> 
[in]NOUT
!>          NOUT is INTEGER
!>          The unit number for output.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 150 of file cdrvsy.f.

153*
154* -- LAPACK test routine --
155* -- LAPACK is a software package provided by Univ. of Tennessee, --
156* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
157*
158* .. Scalar Arguments ..
159 LOGICAL TSTERR
160 INTEGER NMAX, NN, NOUT, NRHS
161 REAL THRESH
162* ..
163* .. Array Arguments ..
164 LOGICAL DOTYPE( * )
165 INTEGER IWORK( * ), NVAL( * )
166 REAL RWORK( * )
167 COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
168 $ WORK( * ), X( * ), XACT( * )
169* ..
170*
171* =====================================================================
172*
173* .. Parameters ..
174 REAL ONE, ZERO
175 parameter( one = 1.0e+0, zero = 0.0e+0 )
176 INTEGER NTYPES, NTESTS
177 parameter( ntypes = 11, ntests = 6 )
178 INTEGER NFACT
179 parameter( nfact = 2 )
180* ..
181* .. Local Scalars ..
182 LOGICAL ZEROT
183 CHARACTER DIST, FACT, TYPE, UPLO, XTYPE
184 CHARACTER*3 PATH
185 INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
186 $ IZERO, J, K, K1, KL, KU, LDA, LWORK, MODE, N,
187 $ NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT
188 REAL AINVNM, ANORM, CNDNUM, RCOND, RCONDC
189* ..
190* .. Local Arrays ..
191 CHARACTER FACTS( NFACT ), UPLOS( 2 )
192 INTEGER ISEED( 4 ), ISEEDY( 4 )
193 REAL RESULT( NTESTS )
194* ..
195* .. External Functions ..
196 REAL CLANSY, SGET06
197 EXTERNAL clansy, sget06
198* ..
199* .. External Subroutines ..
200 EXTERNAL aladhd, alaerh, alasvm, cerrvx, cget04, clacpy,
203 $ xlaenv
204* ..
205* .. Scalars in Common ..
206 LOGICAL LERR, OK
207 CHARACTER*32 SRNAMT
208 INTEGER INFOT, NUNIT
209* ..
210* .. Common blocks ..
211 COMMON / infoc / infot, nunit, ok, lerr
212 COMMON / srnamc / srnamt
213* ..
214* .. Intrinsic Functions ..
215 INTRINSIC cmplx, max, min
216* ..
217* .. Data statements ..
218 DATA iseedy / 1988, 1989, 1990, 1991 /
219 DATA uplos / 'U', 'L' / , facts / 'F', 'N' /
220* ..
221* .. Executable Statements ..
222*
223* Initialize constants and the random number seed.
224*
225 path( 1: 1 ) = 'Complex precision'
226 path( 2: 3 ) = 'SY'
227 nrun = 0
228 nfail = 0
229 nerrs = 0
230 DO 10 i = 1, 4
231 iseed( i ) = iseedy( i )
232 10 CONTINUE
233 lwork = max( 2*nmax, nmax*nrhs )
234*
235* Test the error exits
236*
237 IF( tsterr )
238 $ CALL cerrvx( path, nout )
239 infot = 0
240*
241* Set the block size and minimum block size for testing.
242*
243 nb = 1
244 nbmin = 2
245 CALL xlaenv( 1, nb )
246 CALL xlaenv( 2, nbmin )
247*
248* Do for each value of N in NVAL
249*
250 DO 180 in = 1, nn
251 n = nval( in )
252 lda = max( n, 1 )
253 xtype = 'N'
254 nimat = ntypes
255 IF( n.LE.0 )
256 $ nimat = 1
257*
258 DO 170 imat = 1, nimat
259*
260* Do the tests only if DOTYPE( IMAT ) is true.
261*
262 IF( .NOT.dotype( imat ) )
263 $ GO TO 170
264*
265* Skip types 3, 4, 5, or 6 if the matrix size is too small.
266*
267 zerot = imat.GE.3 .AND. imat.LE.6
268 IF( zerot .AND. n.LT.imat-2 )
269 $ GO TO 170
270*
271* Do first for UPLO = 'U', then for UPLO = 'L'
272*
273 DO 160 iuplo = 1, 2
274 uplo = uplos( iuplo )
275*
276 IF( imat.NE.ntypes ) THEN
277*
278* Set up parameters with CLATB4 and generate a test
279* matrix with CLATMS.
280*
281 CALL clatb4( path, imat, n, n, TYPE, KL, KU, ANORM,
282 $ MODE, CNDNUM, DIST )
283*
284 srnamt = 'CLATMS'
285 CALL clatms( n, n, dist, iseed, TYPE, RWORK, MODE,
286 $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA,
287 $ WORK, INFO )
288*
289* Check error code from CLATMS.
290*
291 IF( info.NE.0 ) THEN
292 CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
293 $ -1, -1, -1, imat, nfail, nerrs, nout )
294 GO TO 160
295 END IF
296*
297* For types 3-6, zero one or more rows and columns of
298* the matrix to test that INFO is returned correctly.
299*
300 IF( zerot ) THEN
301 IF( imat.EQ.3 ) THEN
302 izero = 1
303 ELSE IF( imat.EQ.4 ) THEN
304 izero = n
305 ELSE
306 izero = n / 2 + 1
307 END IF
308*
309 IF( imat.LT.6 ) THEN
310*
311* Set row and column IZERO to zero.
312*
313 IF( iuplo.EQ.1 ) THEN
314 ioff = ( izero-1 )*lda
315 DO 20 i = 1, izero - 1
316 a( ioff+i ) = zero
317 20 CONTINUE
318 ioff = ioff + izero
319 DO 30 i = izero, n
320 a( ioff ) = zero
321 ioff = ioff + lda
322 30 CONTINUE
323 ELSE
324 ioff = izero
325 DO 40 i = 1, izero - 1
326 a( ioff ) = zero
327 ioff = ioff + lda
328 40 CONTINUE
329 ioff = ioff - izero
330 DO 50 i = izero, n
331 a( ioff+i ) = zero
332 50 CONTINUE
333 END IF
334 ELSE
335 IF( iuplo.EQ.1 ) THEN
336*
337* Set the first IZERO rows to zero.
338*
339 ioff = 0
340 DO 70 j = 1, n
341 i2 = min( j, izero )
342 DO 60 i = 1, i2
343 a( ioff+i ) = zero
344 60 CONTINUE
345 ioff = ioff + lda
346 70 CONTINUE
347 ELSE
348*
349* Set the last IZERO rows to zero.
350*
351 ioff = 0
352 DO 90 j = 1, n
353 i1 = max( j, izero )
354 DO 80 i = i1, n
355 a( ioff+i ) = zero
356 80 CONTINUE
357 ioff = ioff + lda
358 90 CONTINUE
359 END IF
360 END IF
361 ELSE
362 izero = 0
363 END IF
364 ELSE
365*
366* IMAT = NTYPES: Use a special block diagonal matrix to
367* test alternate code for the 2-by-2 blocks.
368*
369 CALL clatsy( uplo, n, a, lda, iseed )
370 END IF
371*
372 DO 150 ifact = 1, nfact
373*
374* Do first for FACT = 'F', then for other values.
375*
376 fact = facts( ifact )
377*
378* Compute the condition number for comparison with
379* the value returned by CSYSVX.
380*
381 IF( zerot ) THEN
382 IF( ifact.EQ.1 )
383 $ GO TO 150
384 rcondc = zero
385*
386 ELSE IF( ifact.EQ.1 ) THEN
387*
388* Compute the 1-norm of A.
389*
390 anorm = clansy( '1', uplo, n, a, lda, rwork )
391*
392* Factor the matrix A.
393*
394 CALL clacpy( uplo, n, n, a, lda, afac, lda )
395 CALL csytrf( uplo, n, afac, lda, iwork, work,
396 $ lwork, info )
397*
398* Compute inv(A) and take its norm.
399*
400 CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
401 lwork = (n+nb+1)*(nb+3)
402 CALL csytri2( uplo, n, ainv, lda, iwork, work,
403 $ lwork, info )
404 ainvnm = clansy( '1', uplo, n, ainv, lda, rwork )
405*
406* Compute the 1-norm condition number of A.
407*
408 IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
409 rcondc = one
410 ELSE
411 rcondc = ( one / anorm ) / ainvnm
412 END IF
413 END IF
414*
415* Form an exact solution and set the right hand side.
416*
417 srnamt = 'CLARHS'
418 CALL clarhs( path, xtype, uplo, ' ', n, n, kl, ku,
419 $ nrhs, a, lda, xact, lda, b, lda, iseed,
420 $ info )
421 xtype = 'C'
422*
423* --- Test CSYSV ---
424*
425 IF( ifact.EQ.2 ) THEN
426 CALL clacpy( uplo, n, n, a, lda, afac, lda )
427 CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
428*
429* Factor the matrix and solve the system using CSYSV.
430*
431 srnamt = 'CSYSV '
432 CALL csysv( uplo, n, nrhs, afac, lda, iwork, x,
433 $ lda, work, lwork, info )
434*
435* Adjust the expected value of INFO to account for
436* pivoting.
437*
438 k = izero
439 IF( k.GT.0 ) THEN
440 100 CONTINUE
441 IF( iwork( k ).LT.0 ) THEN
442 IF( iwork( k ).NE.-k ) THEN
443 k = -iwork( k )
444 GO TO 100
445 END IF
446 ELSE IF( iwork( k ).NE.k ) THEN
447 k = iwork( k )
448 GO TO 100
449 END IF
450 END IF
451*
452* Check error code from CSYSV .
453*
454 IF( info.NE.k ) THEN
455 CALL alaerh( path, 'CSYSV ', info, k, uplo, n,
456 $ n, -1, -1, nrhs, imat, nfail,
457 $ nerrs, nout )
458 GO TO 120
459 ELSE IF( info.NE.0 ) THEN
460 GO TO 120
461 END IF
462*
463* Reconstruct matrix from factors and compute
464* residual.
465*
466 CALL csyt01( uplo, n, a, lda, afac, lda, iwork,
467 $ ainv, lda, rwork, result( 1 ) )
468*
469* Compute residual of the computed solution.
470*
471 CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
472 CALL csyt02( uplo, n, nrhs, a, lda, x, lda, work,
473 $ lda, rwork, result( 2 ) )
474*
475* Check solution from generated exact solution.
476*
477 CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
478 $ result( 3 ) )
479 nt = 3
480*
481* Print information about the tests that did not pass
482* the threshold.
483*
484 DO 110 k = 1, nt
485 IF( result( k ).GE.thresh ) THEN
486 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
487 $ CALL aladhd( nout, path )
488 WRITE( nout, fmt = 9999 )'CSYSV ', uplo, n,
489 $ imat, k, result( k )
490 nfail = nfail + 1
491 END IF
492 110 CONTINUE
493 nrun = nrun + nt
494 120 CONTINUE
495 END IF
496*
497* --- Test CSYSVX ---
498*
499 IF( ifact.EQ.2 )
500 $ CALL claset( uplo, n, n, cmplx( zero ),
501 $ cmplx( zero ), afac, lda )
502 CALL claset( 'Full', n, nrhs, cmplx( zero ),
503 $ cmplx( zero ), x, lda )
504*
505* Solve the system and compute the condition number and
506* error bounds using CSYSVX.
507*
508 srnamt = 'CSYSVX'
509 CALL csysvx( fact, uplo, n, nrhs, a, lda, afac, lda,
510 $ iwork, b, lda, x, lda, rcond, rwork,
511 $ rwork( nrhs+1 ), work, lwork,
512 $ rwork( 2*nrhs+1 ), info )
513*
514* Adjust the expected value of INFO to account for
515* pivoting.
516*
517 k = izero
518 IF( k.GT.0 ) THEN
519 130 CONTINUE
520 IF( iwork( k ).LT.0 ) THEN
521 IF( iwork( k ).NE.-k ) THEN
522 k = -iwork( k )
523 GO TO 130
524 END IF
525 ELSE IF( iwork( k ).NE.k ) THEN
526 k = iwork( k )
527 GO TO 130
528 END IF
529 END IF
530*
531* Check the error code from CSYSVX.
532*
533 IF( info.NE.k ) THEN
534 CALL alaerh( path, 'CSYSVX', info, k, fact // uplo,
535 $ n, n, -1, -1, nrhs, imat, nfail,
536 $ nerrs, nout )
537 GO TO 150
538 END IF
539*
540 IF( info.EQ.0 ) THEN
541 IF( ifact.GE.2 ) THEN
542*
543* Reconstruct matrix from factors and compute
544* residual.
545*
546 CALL csyt01( uplo, n, a, lda, afac, lda, iwork,
547 $ ainv, lda, rwork( 2*nrhs+1 ),
548 $ result( 1 ) )
549 k1 = 1
550 ELSE
551 k1 = 2
552 END IF
553*
554* Compute residual of the computed solution.
555*
556 CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
557 CALL csyt02( uplo, n, nrhs, a, lda, x, lda, work,
558 $ lda, rwork( 2*nrhs+1 ), result( 2 ) )
559*
560* Check solution from generated exact solution.
561*
562 CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
563 $ result( 3 ) )
564*
565* Check the error bounds from iterative refinement.
566*
567 CALL cpot05( uplo, n, nrhs, a, lda, b, lda, x, lda,
568 $ xact, lda, rwork, rwork( nrhs+1 ),
569 $ result( 4 ) )
570 ELSE
571 k1 = 6
572 END IF
573*
574* Compare RCOND from CSYSVX with the computed value
575* in RCONDC.
576*
577 result( 6 ) = sget06( rcond, rcondc )
578*
579* Print information about the tests that did not pass
580* the threshold.
581*
582 DO 140 k = k1, 6
583 IF( result( k ).GE.thresh ) THEN
584 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
585 $ CALL aladhd( nout, path )
586 WRITE( nout, fmt = 9998 )'CSYSVX', fact, uplo,
587 $ n, imat, k, result( k )
588 nfail = nfail + 1
589 END IF
590 140 CONTINUE
591 nrun = nrun + 7 - k1
592*
593 150 CONTINUE
594*
595 160 CONTINUE
596 170 CONTINUE
597 180 CONTINUE
598*
599* Print a summary of the results.
600*
601 CALL alasvm( path, nout, nfail, nrun, nerrs )
602*
603 9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i2,
604 $ ', test ', i2, ', ratio =', g12.5 )
605 9998 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N =', i5,
606 $ ', type ', i2, ', test ', i2, ', ratio =', g12.5 )
607 RETURN
608*
609* End of CDRVSY
610*
subroutine alasvm(type, nout, nfail, nrun, nerrs)
ALASVM
Definition alasvm.f:73
subroutine clarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
CLARHS
Definition clarhs.f:208
subroutine xlaenv(ispec, nvalue)
XLAENV
Definition xlaenv.f:81
subroutine aladhd(iounit, path)
ALADHD
Definition aladhd.f:90
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine cerrvx(path, nunit)
CERRVX
Definition cerrvx.f:55
subroutine cget04(n, nrhs, x, ldx, xact, ldxact, rcond, resid)
CGET04
Definition cget04.f:102
subroutine clatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
CLATB4
Definition clatb4.f:121
subroutine clatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
CLATMS
Definition clatms.f:332
subroutine clatsy(uplo, n, x, ldx, iseed)
CLATSY
Definition clatsy.f:89
subroutine cpot05(uplo, n, nrhs, a, lda, b, ldb, x, ldx, xact, ldxact, ferr, berr, reslts)
CPOT05
Definition cpot05.f:165
subroutine csyt01(uplo, n, a, lda, afac, ldafac, ipiv, c, ldc, rwork, resid)
CSYT01
Definition csyt01.f:125
subroutine csyt02(uplo, n, nrhs, a, lda, x, ldx, b, ldb, rwork, resid)
CSYT02
Definition csyt02.f:127
subroutine csysv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
CSYSV computes the solution to system of linear equations A * X = B for SY matrices
Definition csysv.f:169
subroutine csysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr, berr, work, lwork, rwork, info)
CSYSVX computes the solution to system of linear equations A * X = B for SY matrices
Definition csysvx.f:284
subroutine csytrf(uplo, n, a, lda, ipiv, work, lwork, info)
CSYTRF
Definition csytrf.f:180
subroutine csytri2(uplo, n, a, lda, ipiv, work, lwork, info)
CSYTRI2
Definition csytri2.f:125
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:101
real function clansy(norm, uplo, n, a, lda, work)
CLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition clansy.f:121
subroutine claset(uplo, m, n, alpha, beta, a, lda)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition claset.f:104
real function sget06(rcond, rcondc)
SGET06
Definition sget06.f:55
Here is the call graph for this function:
Here is the caller graph for this function: