LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ csysvx()

subroutine csysvx ( character  fact,
character  uplo,
integer  n,
integer  nrhs,
complex, dimension( lda, * )  a,
integer  lda,
complex, dimension( ldaf, * )  af,
integer  ldaf,
integer, dimension( * )  ipiv,
complex, dimension( ldb, * )  b,
integer  ldb,
complex, dimension( ldx, * )  x,
integer  ldx,
real  rcond,
real, dimension( * )  ferr,
real, dimension( * )  berr,
complex, dimension( * )  work,
integer  lwork,
real, dimension( * )  rwork,
integer  info 
)

CSYSVX computes the solution to system of linear equations A * X = B for SY matrices

Download CSYSVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CSYSVX uses the diagonal pivoting factorization to compute the
 solution to a complex system of linear equations A * X = B,
 where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
 matrices.

 Error bounds on the solution and a condition estimate are also
 provided.
Description:
 The following steps are performed:

 1. If FACT = 'N', the diagonal pivoting method is used to factor A.
    The form of the factorization is
       A = U * D * U**T,  if UPLO = 'U', or
       A = L * D * L**T,  if UPLO = 'L',
    where U (or L) is a product of permutation and unit upper (lower)
    triangular matrices, and D is symmetric and block diagonal with
    1-by-1 and 2-by-2 diagonal blocks.

 2. If some D(i,i)=0, so that D is exactly singular, then the routine
    returns with INFO = i. Otherwise, the factored form of A is used
    to estimate the condition number of the matrix A.  If the
    reciprocal of the condition number is less than machine precision,
    INFO = N+1 is returned as a warning, but the routine still goes on
    to solve for X and compute error bounds as described below.

 3. The system of equations is solved for X using the factored form
    of A.

 4. Iterative refinement is applied to improve the computed solution
    matrix and calculate error bounds and backward error estimates
    for it.
Parameters
[in]FACT
          FACT is CHARACTER*1
          Specifies whether or not the factored form of A has been
          supplied on entry.
          = 'F':  On entry, AF and IPIV contain the factored form
                  of A.  A, AF and IPIV will not be modified.
          = 'N':  The matrix A will be copied to AF and factored.
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.
[in]A
          A is COMPLEX array, dimension (LDA,N)
          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
          upper triangular part of A contains the upper triangular part
          of the matrix A, and the strictly lower triangular part of A
          is not referenced.  If UPLO = 'L', the leading N-by-N lower
          triangular part of A contains the lower triangular part of
          the matrix A, and the strictly upper triangular part of A is
          not referenced.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in,out]AF
          AF is COMPLEX array, dimension (LDAF,N)
          If FACT = 'F', then AF is an input argument and on entry
          contains the block diagonal matrix D and the multipliers used
          to obtain the factor U or L from the factorization
          A = U*D*U**T or A = L*D*L**T as computed by CSYTRF.

          If FACT = 'N', then AF is an output argument and on exit
          returns the block diagonal matrix D and the multipliers used
          to obtain the factor U or L from the factorization
          A = U*D*U**T or A = L*D*L**T.
[in]LDAF
          LDAF is INTEGER
          The leading dimension of the array AF.  LDAF >= max(1,N).
[in,out]IPIV
          IPIV is INTEGER array, dimension (N)
          If FACT = 'F', then IPIV is an input argument and on entry
          contains details of the interchanges and the block structure
          of D, as determined by CSYTRF.
          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
          interchanged and D(k,k) is a 1-by-1 diagonal block.
          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

          If FACT = 'N', then IPIV is an output argument and on exit
          contains details of the interchanges and the block structure
          of D, as determined by CSYTRF.
[in]B
          B is COMPLEX array, dimension (LDB,NRHS)
          The N-by-NRHS right hand side matrix B.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]X
          X is COMPLEX array, dimension (LDX,NRHS)
          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
[out]RCOND
          RCOND is REAL
          The estimate of the reciprocal condition number of the matrix
          A.  If RCOND is less than the machine precision (in
          particular, if RCOND = 0), the matrix is singular to working
          precision.  This condition is indicated by a return code of
          INFO > 0.
[out]FERR
          FERR is REAL array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.
[out]BERR
          BERR is REAL array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).
[out]WORK
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The length of WORK.  LWORK >= max(1,2*N), and for best
          performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where
          NB is the optimal blocksize for CSYTRF.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]RWORK
          RWORK is REAL array, dimension (N)
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, and i is
                <= N:  D(i,i) is exactly zero.  The factorization
                       has been completed but the factor D is exactly
                       singular, so the solution and error bounds could
                       not be computed. RCOND = 0 is returned.
                = N+1: D is nonsingular, but RCOND is less than machine
                       precision, meaning that the matrix is singular
                       to working precision.  Nevertheless, the
                       solution and error bounds are computed because
                       there are a number of situations where the
                       computed solution can be more accurate than the
                       value of RCOND would suggest.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 282 of file csysvx.f.

285*
286* -- LAPACK driver routine --
287* -- LAPACK is a software package provided by Univ. of Tennessee, --
288* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
289*
290* .. Scalar Arguments ..
291 CHARACTER FACT, UPLO
292 INTEGER INFO, LDA, LDAF, LDB, LDX, LWORK, N, NRHS
293 REAL RCOND
294* ..
295* .. Array Arguments ..
296 INTEGER IPIV( * )
297 REAL BERR( * ), FERR( * ), RWORK( * )
298 COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
299 $ WORK( * ), X( LDX, * )
300* ..
301*
302* =====================================================================
303*
304* .. Parameters ..
305 REAL ZERO
306 parameter( zero = 0.0e+0 )
307* ..
308* .. Local Scalars ..
309 LOGICAL LQUERY, NOFACT
310 INTEGER LWKOPT, NB
311 REAL ANORM
312* ..
313* .. External Functions ..
314 LOGICAL LSAME
315 INTEGER ILAENV
316 REAL CLANSY, SLAMCH, SROUNDUP_LWORK
318* ..
319* .. External Subroutines ..
320 EXTERNAL clacpy, csycon, csyrfs, csytrf, csytrs, xerbla
321* ..
322* .. Intrinsic Functions ..
323 INTRINSIC max
324* ..
325* .. Executable Statements ..
326*
327* Test the input parameters.
328*
329 info = 0
330 nofact = lsame( fact, 'N' )
331 lquery = ( lwork.EQ.-1 )
332 IF( .NOT.nofact .AND. .NOT.lsame( fact, 'F' ) ) THEN
333 info = -1
334 ELSE IF( .NOT.lsame( uplo, 'U' ) .AND. .NOT.lsame( uplo, 'L' ) )
335 $ THEN
336 info = -2
337 ELSE IF( n.LT.0 ) THEN
338 info = -3
339 ELSE IF( nrhs.LT.0 ) THEN
340 info = -4
341 ELSE IF( lda.LT.max( 1, n ) ) THEN
342 info = -6
343 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
344 info = -8
345 ELSE IF( ldb.LT.max( 1, n ) ) THEN
346 info = -11
347 ELSE IF( ldx.LT.max( 1, n ) ) THEN
348 info = -13
349 ELSE IF( lwork.LT.max( 1, 2*n ) .AND. .NOT.lquery ) THEN
350 info = -18
351 END IF
352*
353 IF( info.EQ.0 ) THEN
354 lwkopt = max( 1, 2*n )
355 IF( nofact ) THEN
356 nb = ilaenv( 1, 'CSYTRF', uplo, n, -1, -1, -1 )
357 lwkopt = max( lwkopt, n*nb )
358 END IF
359 work( 1 ) = sroundup_lwork(lwkopt)
360 END IF
361*
362 IF( info.NE.0 ) THEN
363 CALL xerbla( 'CSYSVX', -info )
364 RETURN
365 ELSE IF( lquery ) THEN
366 RETURN
367 END IF
368*
369 IF( nofact ) THEN
370*
371* Compute the factorization A = U*D*U**T or A = L*D*L**T.
372*
373 CALL clacpy( uplo, n, n, a, lda, af, ldaf )
374 CALL csytrf( uplo, n, af, ldaf, ipiv, work, lwork, info )
375*
376* Return if INFO is non-zero.
377*
378 IF( info.GT.0 )THEN
379 rcond = zero
380 RETURN
381 END IF
382 END IF
383*
384* Compute the norm of the matrix A.
385*
386 anorm = clansy( 'I', uplo, n, a, lda, rwork )
387*
388* Compute the reciprocal of the condition number of A.
389*
390 CALL csycon( uplo, n, af, ldaf, ipiv, anorm, rcond, work, info )
391*
392* Compute the solution vectors X.
393*
394 CALL clacpy( 'Full', n, nrhs, b, ldb, x, ldx )
395 CALL csytrs( uplo, n, nrhs, af, ldaf, ipiv, x, ldx, info )
396*
397* Use iterative refinement to improve the computed solutions and
398* compute error bounds and backward error estimates for them.
399*
400 CALL csyrfs( uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x,
401 $ ldx, ferr, berr, work, rwork, info )
402*
403* Set INFO = N+1 if the matrix is singular to working precision.
404*
405 IF( rcond.LT.slamch( 'Epsilon' ) )
406 $ info = n + 1
407*
408 work( 1 ) = sroundup_lwork(lwkopt)
409*
410 RETURN
411*
412* End of CSYSVX
413*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine csycon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)
CSYCON
Definition csycon.f:125
subroutine csyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CSYRFS
Definition csyrfs.f:192
subroutine csytrf(uplo, n, a, lda, ipiv, work, lwork, info)
CSYTRF
Definition csytrf.f:182
subroutine csytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CSYTRS
Definition csytrs.f:120
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:162
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function clansy(norm, uplo, n, a, lda, work)
CLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition clansy.f:123
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
Here is the call graph for this function:
Here is the caller graph for this function: