LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ csytrs()

subroutine csytrs ( character uplo,
integer n,
integer nrhs,
complex, dimension( lda, * ) a,
integer lda,
integer, dimension( * ) ipiv,
complex, dimension( ldb, * ) b,
integer ldb,
integer info )

CSYTRS

Download CSYTRS + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CSYTRS solves a system of linear equations A*X = B with a complex
!> symmetric matrix A using the factorization A = U*D*U**T or
!> A = L*D*L**T computed by CSYTRF.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          Specifies whether the details of the factorization are stored
!>          as an upper or lower triangular matrix.
!>          = 'U':  Upper triangular, form is A = U*D*U**T;
!>          = 'L':  Lower triangular, form is A = L*D*L**T.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 
[in]A
!>          A is COMPLEX array, dimension (LDA,N)
!>          The block diagonal matrix D and the multipliers used to
!>          obtain the factor U or L as computed by CSYTRF.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D
!>          as determined by CSYTRF.
!> 
[in,out]B
!>          B is COMPLEX array, dimension (LDB,NRHS)
!>          On entry, the right hand side matrix B.
!>          On exit, the solution matrix X.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 117 of file csytrs.f.

118*
119* -- LAPACK computational routine --
120* -- LAPACK is a software package provided by Univ. of Tennessee, --
121* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
122*
123* .. Scalar Arguments ..
124 CHARACTER UPLO
125 INTEGER INFO, LDA, LDB, N, NRHS
126* ..
127* .. Array Arguments ..
128 INTEGER IPIV( * )
129 COMPLEX A( LDA, * ), B( LDB, * )
130* ..
131*
132* =====================================================================
133*
134* .. Parameters ..
135 COMPLEX ONE
136 parameter( one = ( 1.0e+0, 0.0e+0 ) )
137* ..
138* .. Local Scalars ..
139 LOGICAL UPPER
140 INTEGER J, K, KP
141 COMPLEX AK, AKM1, AKM1K, BK, BKM1, DENOM
142* ..
143* .. External Functions ..
144 LOGICAL LSAME
145 EXTERNAL lsame
146* ..
147* .. External Subroutines ..
148 EXTERNAL cgemv, cgeru, cscal, cswap, xerbla
149* ..
150* .. Intrinsic Functions ..
151 INTRINSIC max
152* ..
153* .. Executable Statements ..
154*
155 info = 0
156 upper = lsame( uplo, 'U' )
157 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
158 info = -1
159 ELSE IF( n.LT.0 ) THEN
160 info = -2
161 ELSE IF( nrhs.LT.0 ) THEN
162 info = -3
163 ELSE IF( lda.LT.max( 1, n ) ) THEN
164 info = -5
165 ELSE IF( ldb.LT.max( 1, n ) ) THEN
166 info = -8
167 END IF
168 IF( info.NE.0 ) THEN
169 CALL xerbla( 'CSYTRS', -info )
170 RETURN
171 END IF
172*
173* Quick return if possible
174*
175 IF( n.EQ.0 .OR. nrhs.EQ.0 )
176 $ RETURN
177*
178 IF( upper ) THEN
179*
180* Solve A*X = B, where A = U*D*U**T.
181*
182* First solve U*D*X = B, overwriting B with X.
183*
184* K is the main loop index, decreasing from N to 1 in steps of
185* 1 or 2, depending on the size of the diagonal blocks.
186*
187 k = n
188 10 CONTINUE
189*
190* If K < 1, exit from loop.
191*
192 IF( k.LT.1 )
193 $ GO TO 30
194*
195 IF( ipiv( k ).GT.0 ) THEN
196*
197* 1 x 1 diagonal block
198*
199* Interchange rows K and IPIV(K).
200*
201 kp = ipiv( k )
202 IF( kp.NE.k )
203 $ CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
204*
205* Multiply by inv(U(K)), where U(K) is the transformation
206* stored in column K of A.
207*
208 CALL cgeru( k-1, nrhs, -one, a( 1, k ), 1, b( k, 1 ),
209 $ ldb,
210 $ b( 1, 1 ), ldb )
211*
212* Multiply by the inverse of the diagonal block.
213*
214 CALL cscal( nrhs, one / a( k, k ), b( k, 1 ), ldb )
215 k = k - 1
216 ELSE
217*
218* 2 x 2 diagonal block
219*
220* Interchange rows K-1 and -IPIV(K).
221*
222 kp = -ipiv( k )
223 IF( kp.NE.k-1 )
224 $ CALL cswap( nrhs, b( k-1, 1 ), ldb, b( kp, 1 ), ldb )
225*
226* Multiply by inv(U(K)), where U(K) is the transformation
227* stored in columns K-1 and K of A.
228*
229 CALL cgeru( k-2, nrhs, -one, a( 1, k ), 1, b( k, 1 ),
230 $ ldb,
231 $ b( 1, 1 ), ldb )
232 CALL cgeru( k-2, nrhs, -one, a( 1, k-1 ), 1, b( k-1, 1 ),
233 $ ldb, b( 1, 1 ), ldb )
234*
235* Multiply by the inverse of the diagonal block.
236*
237 akm1k = a( k-1, k )
238 akm1 = a( k-1, k-1 ) / akm1k
239 ak = a( k, k ) / akm1k
240 denom = akm1*ak - one
241 DO 20 j = 1, nrhs
242 bkm1 = b( k-1, j ) / akm1k
243 bk = b( k, j ) / akm1k
244 b( k-1, j ) = ( ak*bkm1-bk ) / denom
245 b( k, j ) = ( akm1*bk-bkm1 ) / denom
246 20 CONTINUE
247 k = k - 2
248 END IF
249*
250 GO TO 10
251 30 CONTINUE
252*
253* Next solve U**T *X = B, overwriting B with X.
254*
255* K is the main loop index, increasing from 1 to N in steps of
256* 1 or 2, depending on the size of the diagonal blocks.
257*
258 k = 1
259 40 CONTINUE
260*
261* If K > N, exit from loop.
262*
263 IF( k.GT.n )
264 $ GO TO 50
265*
266 IF( ipiv( k ).GT.0 ) THEN
267*
268* 1 x 1 diagonal block
269*
270* Multiply by inv(U**T(K)), where U(K) is the transformation
271* stored in column K of A.
272*
273 CALL cgemv( 'Transpose', k-1, nrhs, -one, b, ldb, a( 1,
274 $ k ),
275 $ 1, one, b( k, 1 ), ldb )
276*
277* Interchange rows K and IPIV(K).
278*
279 kp = ipiv( k )
280 IF( kp.NE.k )
281 $ CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
282 k = k + 1
283 ELSE
284*
285* 2 x 2 diagonal block
286*
287* Multiply by inv(U**T(K+1)), where U(K+1) is the transformation
288* stored in columns K and K+1 of A.
289*
290 CALL cgemv( 'Transpose', k-1, nrhs, -one, b, ldb, a( 1,
291 $ k ),
292 $ 1, one, b( k, 1 ), ldb )
293 CALL cgemv( 'Transpose', k-1, nrhs, -one, b, ldb,
294 $ a( 1, k+1 ), 1, one, b( k+1, 1 ), ldb )
295*
296* Interchange rows K and -IPIV(K).
297*
298 kp = -ipiv( k )
299 IF( kp.NE.k )
300 $ CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
301 k = k + 2
302 END IF
303*
304 GO TO 40
305 50 CONTINUE
306*
307 ELSE
308*
309* Solve A*X = B, where A = L*D*L**T.
310*
311* First solve L*D*X = B, overwriting B with X.
312*
313* K is the main loop index, increasing from 1 to N in steps of
314* 1 or 2, depending on the size of the diagonal blocks.
315*
316 k = 1
317 60 CONTINUE
318*
319* If K > N, exit from loop.
320*
321 IF( k.GT.n )
322 $ GO TO 80
323*
324 IF( ipiv( k ).GT.0 ) THEN
325*
326* 1 x 1 diagonal block
327*
328* Interchange rows K and IPIV(K).
329*
330 kp = ipiv( k )
331 IF( kp.NE.k )
332 $ CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
333*
334* Multiply by inv(L(K)), where L(K) is the transformation
335* stored in column K of A.
336*
337 IF( k.LT.n )
338 $ CALL cgeru( n-k, nrhs, -one, a( k+1, k ), 1, b( k,
339 $ 1 ),
340 $ ldb, b( k+1, 1 ), ldb )
341*
342* Multiply by the inverse of the diagonal block.
343*
344 CALL cscal( nrhs, one / a( k, k ), b( k, 1 ), ldb )
345 k = k + 1
346 ELSE
347*
348* 2 x 2 diagonal block
349*
350* Interchange rows K+1 and -IPIV(K).
351*
352 kp = -ipiv( k )
353 IF( kp.NE.k+1 )
354 $ CALL cswap( nrhs, b( k+1, 1 ), ldb, b( kp, 1 ), ldb )
355*
356* Multiply by inv(L(K)), where L(K) is the transformation
357* stored in columns K and K+1 of A.
358*
359 IF( k.LT.n-1 ) THEN
360 CALL cgeru( n-k-1, nrhs, -one, a( k+2, k ), 1, b( k,
361 $ 1 ),
362 $ ldb, b( k+2, 1 ), ldb )
363 CALL cgeru( n-k-1, nrhs, -one, a( k+2, k+1 ), 1,
364 $ b( k+1, 1 ), ldb, b( k+2, 1 ), ldb )
365 END IF
366*
367* Multiply by the inverse of the diagonal block.
368*
369 akm1k = a( k+1, k )
370 akm1 = a( k, k ) / akm1k
371 ak = a( k+1, k+1 ) / akm1k
372 denom = akm1*ak - one
373 DO 70 j = 1, nrhs
374 bkm1 = b( k, j ) / akm1k
375 bk = b( k+1, j ) / akm1k
376 b( k, j ) = ( ak*bkm1-bk ) / denom
377 b( k+1, j ) = ( akm1*bk-bkm1 ) / denom
378 70 CONTINUE
379 k = k + 2
380 END IF
381*
382 GO TO 60
383 80 CONTINUE
384*
385* Next solve L**T *X = B, overwriting B with X.
386*
387* K is the main loop index, decreasing from N to 1 in steps of
388* 1 or 2, depending on the size of the diagonal blocks.
389*
390 k = n
391 90 CONTINUE
392*
393* If K < 1, exit from loop.
394*
395 IF( k.LT.1 )
396 $ GO TO 100
397*
398 IF( ipiv( k ).GT.0 ) THEN
399*
400* 1 x 1 diagonal block
401*
402* Multiply by inv(L**T(K)), where L(K) is the transformation
403* stored in column K of A.
404*
405 IF( k.LT.n )
406 $ CALL cgemv( 'Transpose', n-k, nrhs, -one, b( k+1, 1 ),
407 $ ldb, a( k+1, k ), 1, one, b( k, 1 ), ldb )
408*
409* Interchange rows K and IPIV(K).
410*
411 kp = ipiv( k )
412 IF( kp.NE.k )
413 $ CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
414 k = k - 1
415 ELSE
416*
417* 2 x 2 diagonal block
418*
419* Multiply by inv(L**T(K-1)), where L(K-1) is the transformation
420* stored in columns K-1 and K of A.
421*
422 IF( k.LT.n ) THEN
423 CALL cgemv( 'Transpose', n-k, nrhs, -one, b( k+1, 1 ),
424 $ ldb, a( k+1, k ), 1, one, b( k, 1 ), ldb )
425 CALL cgemv( 'Transpose', n-k, nrhs, -one, b( k+1, 1 ),
426 $ ldb, a( k+1, k-1 ), 1, one, b( k-1, 1 ),
427 $ ldb )
428 END IF
429*
430* Interchange rows K and -IPIV(K).
431*
432 kp = -ipiv( k )
433 IF( kp.NE.k )
434 $ CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
435 k = k - 2
436 END IF
437*
438 GO TO 90
439 100 CONTINUE
440 END IF
441*
442 RETURN
443*
444* End of CSYTRS
445*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
CGEMV
Definition cgemv.f:160
subroutine cgeru(m, n, alpha, x, incx, y, incy, a, lda)
CGERU
Definition cgeru.f:130
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine cscal(n, ca, cx, incx)
CSCAL
Definition cscal.f:78
subroutine cswap(n, cx, incx, cy, incy)
CSWAP
Definition cswap.f:81
Here is the call graph for this function:
Here is the caller graph for this function: