LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ csysv()

subroutine csysv ( character uplo,
integer n,
integer nrhs,
complex, dimension( lda, * ) a,
integer lda,
integer, dimension( * ) ipiv,
complex, dimension( ldb, * ) b,
integer ldb,
complex, dimension( * ) work,
integer lwork,
integer info )

CSYSV computes the solution to system of linear equations A * X = B for SY matrices

Download CSYSV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CSYSV computes the solution to a complex system of linear equations
!>    A * X = B,
!> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
!> matrices.
!>
!> The diagonal pivoting method is used to factor A as
!>    A = U * D * U**T,  if UPLO = 'U', or
!>    A = L * D * L**T,  if UPLO = 'L',
!> where U (or L) is a product of permutation and unit upper (lower)
!> triangular matrices, and D is symmetric and block diagonal with
!> 1-by-1 and 2-by-2 diagonal blocks.  The factored form of A is then
!> used to solve the system of equations A * X = B.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>          The number of linear equations, i.e., the order of the
!>          matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 
[in,out]A
!>          A is COMPLEX array, dimension (LDA,N)
!>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
!>          N-by-N upper triangular part of A contains the upper
!>          triangular part of the matrix A, and the strictly lower
!>          triangular part of A is not referenced.  If UPLO = 'L', the
!>          leading N-by-N lower triangular part of A contains the lower
!>          triangular part of the matrix A, and the strictly upper
!>          triangular part of A is not referenced.
!>
!>          On exit, if INFO = 0, the block diagonal matrix D and the
!>          multipliers used to obtain the factor U or L from the
!>          factorization A = U*D*U**T or A = L*D*L**T as computed by
!>          CSYTRF.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D, as
!>          determined by CSYTRF.  If IPIV(k) > 0, then rows and columns
!>          k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
!>          diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
!>          then rows and columns k-1 and -IPIV(k) were interchanged and
!>          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and
!>          IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
!>          -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
!>          diagonal block.
!> 
[in,out]B
!>          B is COMPLEX array, dimension (LDB,NRHS)
!>          On entry, the N-by-NRHS right hand side matrix B.
!>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of WORK.  LWORK >= 1, and for best performance
!>          LWORK >= max(1,N*NB), where NB is the optimal blocksize for
!>          CSYTRF.
!>          for LWORK < N, TRS will be done with Level BLAS 2
!>          for LWORK >= N, TRS will be done with Level BLAS 3
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!>          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
!>               has been completed, but the block diagonal matrix D is
!>               exactly singular, so the solution could not be computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 167 of file csysv.f.

169*
170* -- LAPACK driver routine --
171* -- LAPACK is a software package provided by Univ. of Tennessee, --
172* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
173*
174* .. Scalar Arguments ..
175 CHARACTER UPLO
176 INTEGER INFO, LDA, LDB, LWORK, N, NRHS
177* ..
178* .. Array Arguments ..
179 INTEGER IPIV( * )
180 COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
181* ..
182*
183* =====================================================================
184*
185* .. Local Scalars ..
186 LOGICAL LQUERY
187 INTEGER LWKOPT
188* ..
189* .. External Functions ..
190 LOGICAL LSAME
191 REAL SROUNDUP_LWORK
192 EXTERNAL lsame, sroundup_lwork
193* ..
194* .. External Subroutines ..
195 EXTERNAL xerbla, csytrf, csytrs, csytrs2
196* ..
197* .. Intrinsic Functions ..
198 INTRINSIC max
199* ..
200* .. Executable Statements ..
201*
202* Test the input parameters.
203*
204 info = 0
205 lquery = ( lwork.EQ.-1 )
206 IF( .NOT.lsame( uplo, 'U' ) .AND.
207 $ .NOT.lsame( uplo, 'L' ) ) THEN
208 info = -1
209 ELSE IF( n.LT.0 ) THEN
210 info = -2
211 ELSE IF( nrhs.LT.0 ) THEN
212 info = -3
213 ELSE IF( lda.LT.max( 1, n ) ) THEN
214 info = -5
215 ELSE IF( ldb.LT.max( 1, n ) ) THEN
216 info = -8
217 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
218 info = -10
219 END IF
220*
221 IF( info.EQ.0 ) THEN
222 IF( n.EQ.0 ) THEN
223 lwkopt = 1
224 ELSE
225 CALL csytrf( uplo, n, a, lda, ipiv, work, -1, info )
226 lwkopt = int( work( 1 ) )
227 END IF
228 work( 1 ) = sroundup_lwork(lwkopt)
229 END IF
230*
231 IF( info.NE.0 ) THEN
232 CALL xerbla( 'CSYSV ', -info )
233 RETURN
234 ELSE IF( lquery ) THEN
235 RETURN
236 END IF
237*
238* Compute the factorization A = U*D*U**T or A = L*D*L**T.
239*
240 CALL csytrf( uplo, n, a, lda, ipiv, work, lwork, info )
241 IF( info.EQ.0 ) THEN
242*
243* Solve the system A*X = B, overwriting B with X.
244*
245 IF ( lwork.LT.n ) THEN
246*
247* Solve with TRS ( Use Level BLAS 2)
248*
249 CALL csytrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
250*
251 ELSE
252*
253* Solve with TRS2 ( Use Level BLAS 3)
254*
255 CALL csytrs2( uplo,n,nrhs,a,lda,ipiv,b,ldb,work,info )
256*
257 END IF
258*
259 END IF
260*
261 work( 1 ) = sroundup_lwork(lwkopt)
262*
263 RETURN
264*
265* End of CSYSV
266*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine csytrf(uplo, n, a, lda, ipiv, work, lwork, info)
CSYTRF
Definition csytrf.f:180
subroutine csytrs2(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info)
CSYTRS2
Definition csytrs2.f:130
subroutine csytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CSYTRS
Definition csytrs.f:118
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
Here is the call graph for this function:
Here is the caller graph for this function: