LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zpptri.f
Go to the documentation of this file.
1*> \brief \b ZPPTRI
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZPPTRI + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpptri.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpptri.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpptri.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE ZPPTRI( UPLO, N, AP, INFO )
20*
21* .. Scalar Arguments ..
22* CHARACTER UPLO
23* INTEGER INFO, N
24* ..
25* .. Array Arguments ..
26* COMPLEX*16 AP( * )
27* ..
28*
29*
30*> \par Purpose:
31* =============
32*>
33*> \verbatim
34*>
35*> ZPPTRI computes the inverse of a complex Hermitian positive definite
36*> matrix A using the Cholesky factorization A = U**H*U or A = L*L**H
37*> computed by ZPPTRF.
38*> \endverbatim
39*
40* Arguments:
41* ==========
42*
43*> \param[in] UPLO
44*> \verbatim
45*> UPLO is CHARACTER*1
46*> = 'U': Upper triangular factor is stored in AP;
47*> = 'L': Lower triangular factor is stored in AP.
48*> \endverbatim
49*>
50*> \param[in] N
51*> \verbatim
52*> N is INTEGER
53*> The order of the matrix A. N >= 0.
54*> \endverbatim
55*>
56*> \param[in,out] AP
57*> \verbatim
58*> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
59*> On entry, the triangular factor U or L from the Cholesky
60*> factorization A = U**H*U or A = L*L**H, packed columnwise as
61*> a linear array. The j-th column of U or L is stored in the
62*> array AP as follows:
63*> if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
64*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
65*>
66*> On exit, the upper or lower triangle of the (Hermitian)
67*> inverse of A, overwriting the input factor U or L.
68*> \endverbatim
69*>
70*> \param[out] INFO
71*> \verbatim
72*> INFO is INTEGER
73*> = 0: successful exit
74*> < 0: if INFO = -i, the i-th argument had an illegal value
75*> > 0: if INFO = i, the (i,i) element of the factor U or L is
76*> zero, and the inverse could not be computed.
77*> \endverbatim
78*
79* Authors:
80* ========
81*
82*> \author Univ. of Tennessee
83*> \author Univ. of California Berkeley
84*> \author Univ. of Colorado Denver
85*> \author NAG Ltd.
86*
87*> \ingroup pptri
88*
89* =====================================================================
90 SUBROUTINE zpptri( UPLO, N, AP, INFO )
91*
92* -- LAPACK computational routine --
93* -- LAPACK is a software package provided by Univ. of Tennessee, --
94* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
95*
96* .. Scalar Arguments ..
97 CHARACTER UPLO
98 INTEGER INFO, N
99* ..
100* .. Array Arguments ..
101 COMPLEX*16 AP( * )
102* ..
103*
104* =====================================================================
105*
106* .. Parameters ..
107 DOUBLE PRECISION ONE
108 parameter( one = 1.0d+0 )
109* ..
110* .. Local Scalars ..
111 LOGICAL UPPER
112 INTEGER J, JC, JJ, JJN
113 DOUBLE PRECISION AJJ
114* ..
115* .. External Functions ..
116 LOGICAL LSAME
117 COMPLEX*16 ZDOTC
118 EXTERNAL lsame, zdotc
119* ..
120* .. External Subroutines ..
121 EXTERNAL xerbla, zdscal, zhpr, ztpmv, ztptri
122* ..
123* .. Intrinsic Functions ..
124 INTRINSIC dble
125* ..
126* .. Executable Statements ..
127*
128* Test the input parameters.
129*
130 info = 0
131 upper = lsame( uplo, 'U' )
132 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
133 info = -1
134 ELSE IF( n.LT.0 ) THEN
135 info = -2
136 END IF
137 IF( info.NE.0 ) THEN
138 CALL xerbla( 'ZPPTRI', -info )
139 RETURN
140 END IF
141*
142* Quick return if possible
143*
144 IF( n.EQ.0 )
145 $ RETURN
146*
147* Invert the triangular Cholesky factor U or L.
148*
149 CALL ztptri( uplo, 'Non-unit', n, ap, info )
150 IF( info.GT.0 )
151 $ RETURN
152 IF( upper ) THEN
153*
154* Compute the product inv(U) * inv(U)**H.
155*
156 jj = 0
157 DO 10 j = 1, n
158 jc = jj + 1
159 jj = jj + j
160 IF( j.GT.1 )
161 $ CALL zhpr( 'Upper', j-1, one, ap( jc ), 1, ap )
162 ajj = dble( ap( jj ) )
163 CALL zdscal( j, ajj, ap( jc ), 1 )
164 10 CONTINUE
165*
166 ELSE
167*
168* Compute the product inv(L)**H * inv(L).
169*
170 jj = 1
171 DO 20 j = 1, n
172 jjn = jj + n - j + 1
173 ap( jj ) = dble( zdotc( n-j+1, ap( jj ), 1, ap( jj ),
174 $ 1 ) )
175 IF( j.LT.n )
176 $ CALL ztpmv( 'Lower', 'Conjugate transpose',
177 $ 'Non-unit',
178 $ n-j, ap( jjn ), ap( jj+1 ), 1 )
179 jj = jjn
180 20 CONTINUE
181 END IF
182*
183 RETURN
184*
185* End of ZPPTRI
186*
187 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zhpr(uplo, n, alpha, x, incx, ap)
ZHPR
Definition zhpr.f:130
subroutine zpptri(uplo, n, ap, info)
ZPPTRI
Definition zpptri.f:91
subroutine zdscal(n, da, zx, incx)
ZDSCAL
Definition zdscal.f:78
subroutine ztpmv(uplo, trans, diag, n, ap, x, incx)
ZTPMV
Definition ztpmv.f:142
subroutine ztptri(uplo, diag, n, ap, info)
ZTPTRI
Definition ztptri.f:115