LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zlange.f
Go to the documentation of this file.
1*> \brief \b ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZLANGE + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlange.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlange.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlange.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* DOUBLE PRECISION FUNCTION ZLANGE( NORM, M, N, A, LDA, WORK )
20*
21* .. Scalar Arguments ..
22* CHARACTER NORM
23* INTEGER LDA, M, N
24* ..
25* .. Array Arguments ..
26* DOUBLE PRECISION WORK( * )
27* COMPLEX*16 A( LDA, * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> ZLANGE returns the value of the one norm, or the Frobenius norm, or
37*> the infinity norm, or the element of largest absolute value of a
38*> complex matrix A.
39*> \endverbatim
40*>
41*> \return ZLANGE
42*> \verbatim
43*>
44*> ZLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
45*> (
46*> ( norm1(A), NORM = '1', 'O' or 'o'
47*> (
48*> ( normI(A), NORM = 'I' or 'i'
49*> (
50*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
51*>
52*> where norm1 denotes the one norm of a matrix (maximum column sum),
53*> normI denotes the infinity norm of a matrix (maximum row sum) and
54*> normF denotes the Frobenius norm of a matrix (square root of sum of
55*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
56*> \endverbatim
57*
58* Arguments:
59* ==========
60*
61*> \param[in] NORM
62*> \verbatim
63*> NORM is CHARACTER*1
64*> Specifies the value to be returned in ZLANGE as described
65*> above.
66*> \endverbatim
67*>
68*> \param[in] M
69*> \verbatim
70*> M is INTEGER
71*> The number of rows of the matrix A. M >= 0. When M = 0,
72*> ZLANGE is set to zero.
73*> \endverbatim
74*>
75*> \param[in] N
76*> \verbatim
77*> N is INTEGER
78*> The number of columns of the matrix A. N >= 0. When N = 0,
79*> ZLANGE is set to zero.
80*> \endverbatim
81*>
82*> \param[in] A
83*> \verbatim
84*> A is COMPLEX*16 array, dimension (LDA,N)
85*> The m by n matrix A.
86*> \endverbatim
87*>
88*> \param[in] LDA
89*> \verbatim
90*> LDA is INTEGER
91*> The leading dimension of the array A. LDA >= max(M,1).
92*> \endverbatim
93*>
94*> \param[out] WORK
95*> \verbatim
96*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
97*> where LWORK >= M when NORM = 'I'; otherwise, WORK is not
98*> referenced.
99*> \endverbatim
100*
101* Authors:
102* ========
103*
104*> \author Univ. of Tennessee
105*> \author Univ. of California Berkeley
106*> \author Univ. of Colorado Denver
107*> \author NAG Ltd.
108*
109*> \ingroup lange
110*
111* =====================================================================
112 DOUBLE PRECISION FUNCTION zlange( NORM, M, N, A, LDA, WORK )
113*
114* -- LAPACK auxiliary routine --
115* -- LAPACK is a software package provided by Univ. of Tennessee, --
116* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
117*
118* .. Scalar Arguments ..
119 CHARACTER norm
120 INTEGER lda, m, n
121* ..
122* .. Array Arguments ..
123 DOUBLE PRECISION work( * )
124 COMPLEX*16 a( lda, * )
125* ..
126*
127* =====================================================================
128*
129* .. Parameters ..
130 DOUBLE PRECISION one, zero
131 parameter( one = 1.0d+0, zero = 0.0d+0 )
132* ..
133* .. Local Scalars ..
134 INTEGER i, j
135 DOUBLE PRECISION scale, sum, VALUE, temp
136* ..
137* .. External Functions ..
138 LOGICAL lsame, disnan
139 EXTERNAL lsame, disnan
140* ..
141* .. External Subroutines ..
142 EXTERNAL zlassq
143* ..
144* .. Intrinsic Functions ..
145 INTRINSIC abs, min, sqrt
146* ..
147* .. Executable Statements ..
148*
149 IF( min( m, n ).EQ.0 ) THEN
150 VALUE = zero
151 ELSE IF( lsame( norm, 'M' ) ) THEN
152*
153* Find max(abs(A(i,j))).
154*
155 VALUE = zero
156 DO 20 j = 1, n
157 DO 10 i = 1, m
158 temp = abs( a( i, j ) )
159 IF( VALUE.LT.temp .OR. disnan( temp ) ) VALUE = temp
160 10 CONTINUE
161 20 CONTINUE
162 ELSE IF( ( lsame( norm, 'O' ) ) .OR. ( norm.EQ.'1' ) ) THEN
163*
164* Find norm1(A).
165*
166 VALUE = zero
167 DO 40 j = 1, n
168 sum = zero
169 DO 30 i = 1, m
170 sum = sum + abs( a( i, j ) )
171 30 CONTINUE
172 IF( VALUE.LT.sum .OR. disnan( sum ) ) VALUE = sum
173 40 CONTINUE
174 ELSE IF( lsame( norm, 'I' ) ) THEN
175*
176* Find normI(A).
177*
178 DO 50 i = 1, m
179 work( i ) = zero
180 50 CONTINUE
181 DO 70 j = 1, n
182 DO 60 i = 1, m
183 work( i ) = work( i ) + abs( a( i, j ) )
184 60 CONTINUE
185 70 CONTINUE
186 VALUE = zero
187 DO 80 i = 1, m
188 temp = work( i )
189 IF( VALUE.LT.temp .OR. disnan( temp ) ) VALUE = temp
190 80 CONTINUE
191 ELSE IF( ( lsame( norm, 'F' ) ) .OR.
192 $ ( lsame( norm, 'E' ) ) ) THEN
193*
194* Find normF(A).
195*
196 scale = zero
197 sum = one
198 DO 90 j = 1, n
199 CALL zlassq( m, a( 1, j ), 1, scale, sum )
200 90 CONTINUE
201 VALUE = scale*sqrt( sum )
202 END IF
203*
204 zlange = VALUE
205 RETURN
206*
207* End of ZLANGE
208*
209 END
logical function disnan(din)
DISNAN tests input for NaN.
Definition disnan.f:57
double precision function zlange(norm, m, n, a, lda, work)
ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition zlange.f:113
subroutine zlassq(n, x, incx, scale, sumsq)
ZLASSQ updates a sum of squares represented in scaled form.
Definition zlassq.f90:122
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48