LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zunmr2.f
Go to the documentation of this file.
1*> \brief \b ZUNMR2 multiplies a general matrix by the unitary matrix from a RQ factorization determined by cgerqf (unblocked algorithm).
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZUNMR2 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunmr2.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunmr2.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunmr2.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE ZUNMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
20* WORK, INFO )
21*
22* .. Scalar Arguments ..
23* CHARACTER SIDE, TRANS
24* INTEGER INFO, K, LDA, LDC, M, N
25* ..
26* .. Array Arguments ..
27* COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> ZUNMR2 overwrites the general complex m-by-n matrix C with
37*>
38*> Q * C if SIDE = 'L' and TRANS = 'N', or
39*>
40*> Q**H* C if SIDE = 'L' and TRANS = 'C', or
41*>
42*> C * Q if SIDE = 'R' and TRANS = 'N', or
43*>
44*> C * Q**H if SIDE = 'R' and TRANS = 'C',
45*>
46*> where Q is a complex unitary matrix defined as the product of k
47*> elementary reflectors
48*>
49*> Q = H(1)**H H(2)**H . . . H(k)**H
50*>
51*> as returned by ZGERQF. Q is of order m if SIDE = 'L' and of order n
52*> if SIDE = 'R'.
53*> \endverbatim
54*
55* Arguments:
56* ==========
57*
58*> \param[in] SIDE
59*> \verbatim
60*> SIDE is CHARACTER*1
61*> = 'L': apply Q or Q**H from the Left
62*> = 'R': apply Q or Q**H from the Right
63*> \endverbatim
64*>
65*> \param[in] TRANS
66*> \verbatim
67*> TRANS is CHARACTER*1
68*> = 'N': apply Q (No transpose)
69*> = 'C': apply Q**H (Conjugate transpose)
70*> \endverbatim
71*>
72*> \param[in] M
73*> \verbatim
74*> M is INTEGER
75*> The number of rows of the matrix C. M >= 0.
76*> \endverbatim
77*>
78*> \param[in] N
79*> \verbatim
80*> N is INTEGER
81*> The number of columns of the matrix C. N >= 0.
82*> \endverbatim
83*>
84*> \param[in] K
85*> \verbatim
86*> K is INTEGER
87*> The number of elementary reflectors whose product defines
88*> the matrix Q.
89*> If SIDE = 'L', M >= K >= 0;
90*> if SIDE = 'R', N >= K >= 0.
91*> \endverbatim
92*>
93*> \param[in] A
94*> \verbatim
95*> A is COMPLEX*16 array, dimension
96*> (LDA,M) if SIDE = 'L',
97*> (LDA,N) if SIDE = 'R'
98*> The i-th row must contain the vector which defines the
99*> elementary reflector H(i), for i = 1,2,...,k, as returned by
100*> ZGERQF in the last k rows of its array argument A.
101*> A is modified by the routine but restored on exit.
102*> \endverbatim
103*>
104*> \param[in] LDA
105*> \verbatim
106*> LDA is INTEGER
107*> The leading dimension of the array A. LDA >= max(1,K).
108*> \endverbatim
109*>
110*> \param[in] TAU
111*> \verbatim
112*> TAU is COMPLEX*16 array, dimension (K)
113*> TAU(i) must contain the scalar factor of the elementary
114*> reflector H(i), as returned by ZGERQF.
115*> \endverbatim
116*>
117*> \param[in,out] C
118*> \verbatim
119*> C is COMPLEX*16 array, dimension (LDC,N)
120*> On entry, the m-by-n matrix C.
121*> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
122*> \endverbatim
123*>
124*> \param[in] LDC
125*> \verbatim
126*> LDC is INTEGER
127*> The leading dimension of the array C. LDC >= max(1,M).
128*> \endverbatim
129*>
130*> \param[out] WORK
131*> \verbatim
132*> WORK is COMPLEX*16 array, dimension
133*> (N) if SIDE = 'L',
134*> (M) if SIDE = 'R'
135*> \endverbatim
136*>
137*> \param[out] INFO
138*> \verbatim
139*> INFO is INTEGER
140*> = 0: successful exit
141*> < 0: if INFO = -i, the i-th argument had an illegal value
142*> \endverbatim
143*
144* Authors:
145* ========
146*
147*> \author Univ. of Tennessee
148*> \author Univ. of California Berkeley
149*> \author Univ. of Colorado Denver
150*> \author NAG Ltd.
151*
152*> \ingroup unmr2
153*
154* =====================================================================
155 SUBROUTINE zunmr2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
156 $ WORK, INFO )
157*
158* -- LAPACK computational routine --
159* -- LAPACK is a software package provided by Univ. of Tennessee, --
160* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
161*
162* .. Scalar Arguments ..
163 CHARACTER SIDE, TRANS
164 INTEGER INFO, K, LDA, LDC, M, N
165* ..
166* .. Array Arguments ..
167 COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
168* ..
169*
170* =====================================================================
171*
172* .. Parameters ..
173 COMPLEX*16 ONE
174 parameter( one = ( 1.0d+0, 0.0d+0 ) )
175* ..
176* .. Local Scalars ..
177 LOGICAL LEFT, NOTRAN
178 INTEGER I, I1, I2, I3, MI, NI, NQ
179 COMPLEX*16 TAUI
180* ..
181* .. External Functions ..
182 LOGICAL LSAME
183 EXTERNAL lsame
184* ..
185* .. External Subroutines ..
186 EXTERNAL xerbla, zlacgv, zlarf1l
187* ..
188* .. Intrinsic Functions ..
189 INTRINSIC dconjg, max
190* ..
191* .. Executable Statements ..
192*
193* Test the input arguments
194*
195 info = 0
196 left = lsame( side, 'L' )
197 notran = lsame( trans, 'N' )
198*
199* NQ is the order of Q
200*
201 IF( left ) THEN
202 nq = m
203 ELSE
204 nq = n
205 END IF
206 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
207 info = -1
208 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'C' ) ) THEN
209 info = -2
210 ELSE IF( m.LT.0 ) THEN
211 info = -3
212 ELSE IF( n.LT.0 ) THEN
213 info = -4
214 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
215 info = -5
216 ELSE IF( lda.LT.max( 1, k ) ) THEN
217 info = -7
218 ELSE IF( ldc.LT.max( 1, m ) ) THEN
219 info = -10
220 END IF
221 IF( info.NE.0 ) THEN
222 CALL xerbla( 'ZUNMR2', -info )
223 RETURN
224 END IF
225*
226* Quick return if possible
227*
228 IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 )
229 $ RETURN
230*
231 IF( ( left .AND. .NOT.notran .OR. .NOT.left .AND. notran ) ) THEN
232 i1 = 1
233 i2 = k
234 i3 = 1
235 ELSE
236 i1 = k
237 i2 = 1
238 i3 = -1
239 END IF
240*
241 IF( left ) THEN
242 ni = n
243 ELSE
244 mi = m
245 END IF
246*
247 DO 10 i = i1, i2, i3
248 IF( left ) THEN
249*
250* H(i) or H(i)**H is applied to C(1:m-k+i,1:n)
251*
252 mi = m - k + i
253 ELSE
254*
255* H(i) or H(i)**H is applied to C(1:m,1:n-k+i)
256*
257 ni = n - k + i
258 END IF
259*
260* Apply H(i) or H(i)**H
261*
262 IF( notran ) THEN
263 taui = dconjg( tau( i ) )
264 ELSE
265 taui = tau( i )
266 END IF
267 CALL zlacgv( nq-k+i-1, a( i, 1 ), lda )
268 CALL zlarf1l( side, mi, ni, a( i, 1 ), lda, taui, c, ldc,
269 $ work )
270 CALL zlacgv( nq-k+i-1, a( i, 1 ), lda )
271 10 CONTINUE
272 RETURN
273*
274* End of ZUNMR2
275*
276 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zlacgv(n, x, incx)
ZLACGV conjugates a complex vector.
Definition zlacgv.f:72
subroutine zunmr2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
ZUNMR2 multiplies a general matrix by the unitary matrix from a RQ factorization determined by cgerqf...
Definition zunmr2.f:157
subroutine zlarf1l(side, m, n, v, incv, tau, c, ldc, work)
ZLARF1L applies an elementary reflector to a general rectangular
Definition zlarf1l.f:130