LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dgelqt3.f
Go to the documentation of this file.
1*> \brief \b DGELQT3 recursively computes a LQ factorization of a general real or complex matrix using the compact WY representation of Q.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DGELQT3 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelqt3.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelqt3.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelqt3.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* RECURSIVE SUBROUTINE DGELQT3( M, N, A, LDA, T, LDT, INFO )
22*
23* .. Scalar Arguments ..
24* INTEGER INFO, LDA, M, N, LDT
25* ..
26* .. Array Arguments ..
27* DOUBLE PRECISION A( LDA, * ), T( LDT, * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> DGELQT3 recursively computes a LQ factorization of a real M-by-N
37*> matrix A, using the compact WY representation of Q.
38*>
39*> Based on the algorithm of Elmroth and Gustavson,
40*> IBM J. Res. Develop. Vol 44 No. 4 July 2000.
41*> \endverbatim
42*
43* Arguments:
44* ==========
45*
46*> \param[in] M
47*> \verbatim
48*> M is INTEGER
49*> The number of rows of the matrix A. M =< N.
50*> \endverbatim
51*>
52*> \param[in] N
53*> \verbatim
54*> N is INTEGER
55*> The number of columns of the matrix A. N >= 0.
56*> \endverbatim
57*>
58*> \param[in,out] A
59*> \verbatim
60*> A is DOUBLE PRECISION array, dimension (LDA,N)
61*> On entry, the real M-by-N matrix A. On exit, the elements on and
62*> below the diagonal contain the N-by-N lower triangular matrix L; the
63*> elements above the diagonal are the rows of V. See below for
64*> further details.
65*> \endverbatim
66*>
67*> \param[in] LDA
68*> \verbatim
69*> LDA is INTEGER
70*> The leading dimension of the array A. LDA >= max(1,M).
71*> \endverbatim
72*>
73*> \param[out] T
74*> \verbatim
75*> T is DOUBLE PRECISION array, dimension (LDT,N)
76*> The N-by-N upper triangular factor of the block reflector.
77*> The elements on and above the diagonal contain the block
78*> reflector T; the elements below the diagonal are not used.
79*> See below for further details.
80*> \endverbatim
81*>
82*> \param[in] LDT
83*> \verbatim
84*> LDT is INTEGER
85*> The leading dimension of the array T. LDT >= max(1,N).
86*> \endverbatim
87*>
88*> \param[out] INFO
89*> \verbatim
90*> INFO is INTEGER
91*> = 0: successful exit
92*> < 0: if INFO = -i, the i-th argument had an illegal value
93*> \endverbatim
94*
95* Authors:
96* ========
97*
98*> \author Univ. of Tennessee
99*> \author Univ. of California Berkeley
100*> \author Univ. of Colorado Denver
101*> \author NAG Ltd.
102*
103*> \ingroup gelqt3
104*
105*> \par Further Details:
106* =====================
107*>
108*> \verbatim
109*>
110*> The matrix V stores the elementary reflectors H(i) in the i-th row
111*> above the diagonal. For example, if M=5 and N=3, the matrix V is
112*>
113*> V = ( 1 v1 v1 v1 v1 )
114*> ( 1 v2 v2 v2 )
115*> ( 1 v3 v3 v3 )
116*>
117*>
118*> where the vi's represent the vectors which define H(i), which are returned
119*> in the matrix A. The 1's along the diagonal of V are not stored in A. The
120*> block reflector H is then given by
121*>
122*> H = I - V * T * V**T
123*>
124*> where V**T is the transpose of V.
125*>
126*> For details of the algorithm, see Elmroth and Gustavson (cited above).
127*> \endverbatim
128*>
129* =====================================================================
130 RECURSIVE SUBROUTINE dgelqt3( M, N, A, LDA, T, LDT, INFO )
131*
132* -- LAPACK computational routine --
133* -- LAPACK is a software package provided by Univ. of Tennessee, --
134* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
135*
136* .. Scalar Arguments ..
137 INTEGER info, lda, m, n, ldt
138* ..
139* .. Array Arguments ..
140 DOUBLE PRECISION a( lda, * ), t( ldt, * )
141* ..
142*
143* =====================================================================
144*
145* .. Parameters ..
146 DOUBLE PRECISION one
147 parameter( one = 1.0d+00 )
148* ..
149* .. Local Scalars ..
150 INTEGER i, i1, j, j1, m1, m2, iinfo
151* ..
152* .. External Subroutines ..
153 EXTERNAL dlarfg, dtrmm, dgemm, xerbla
154* ..
155* .. Executable Statements ..
156*
157 info = 0
158 IF( m .LT. 0 ) THEN
159 info = -1
160 ELSE IF( n .LT. m ) THEN
161 info = -2
162 ELSE IF( lda .LT. max( 1, m ) ) THEN
163 info = -4
164 ELSE IF( ldt .LT. max( 1, m ) ) THEN
165 info = -6
166 END IF
167 IF( info.NE.0 ) THEN
168 CALL xerbla( 'DGELQT3', -info )
169 RETURN
170 END IF
171*
172 IF( m.EQ.1 ) THEN
173*
174* Compute Householder transform when M=1
175*
176 CALL dlarfg( n, a( 1, 1 ), a( 1, min( 2, n ) ), lda,
177 & t( 1, 1 ) )
178*
179 ELSE
180*
181* Otherwise, split A into blocks...
182*
183 m1 = m/2
184 m2 = m-m1
185 i1 = min( m1+1, m )
186 j1 = min( m+1, n )
187*
188* Compute A(1:M1,1:N) <- (Y1,R1,T1), where Q1 = I - Y1 T1 Y1^H
189*
190 CALL dgelqt3( m1, n, a, lda, t, ldt, iinfo )
191*
192* Compute A(J1:M,1:N) = Q1^H A(J1:M,1:N) [workspace: T(1:N1,J1:N)]
193*
194 DO i=1,m2
195 DO j=1,m1
196 t( i+m1, j ) = a( i+m1, j )
197 END DO
198 END DO
199 CALL dtrmm( 'R', 'U', 'T', 'U', m2, m1, one,
200 & a, lda, t( i1, 1 ), ldt )
201*
202 CALL dgemm( 'N', 'T', m2, m1, n-m1, one, a( i1, i1 ), lda,
203 & a( 1, i1 ), lda, one, t( i1, 1 ), ldt)
204*
205 CALL dtrmm( 'R', 'U', 'N', 'N', m2, m1, one,
206 & t, ldt, t( i1, 1 ), ldt )
207*
208 CALL dgemm( 'N', 'N', m2, n-m1, m1, -one, t( i1, 1 ), ldt,
209 & a( 1, i1 ), lda, one, a( i1, i1 ), lda )
210*
211 CALL dtrmm( 'R', 'U', 'N', 'U', m2, m1 , one,
212 & a, lda, t( i1, 1 ), ldt )
213*
214 DO i=1,m2
215 DO j=1,m1
216 a( i+m1, j ) = a( i+m1, j ) - t( i+m1, j )
217 t( i+m1, j )=0
218 END DO
219 END DO
220*
221* Compute A(J1:M,J1:N) <- (Y2,R2,T2) where Q2 = I - Y2 T2 Y2^H
222*
223 CALL dgelqt3( m2, n-m1, a( i1, i1 ), lda,
224 & t( i1, i1 ), ldt, iinfo )
225*
226* Compute T3 = T(J1:N1,1:N) = -T1 Y1^H Y2 T2
227*
228 DO i=1,m2
229 DO j=1,m1
230 t( j, i+m1 ) = (a( j, i+m1 ))
231 END DO
232 END DO
233*
234 CALL dtrmm( 'R', 'U', 'T', 'U', m1, m2, one,
235 & a( i1, i1 ), lda, t( 1, i1 ), ldt )
236*
237 CALL dgemm( 'N', 'T', m1, m2, n-m, one, a( 1, j1 ), lda,
238 & a( i1, j1 ), lda, one, t( 1, i1 ), ldt )
239*
240 CALL dtrmm( 'L', 'U', 'N', 'N', m1, m2, -one, t, ldt,
241 & t( 1, i1 ), ldt )
242*
243 CALL dtrmm( 'R', 'U', 'N', 'N', m1, m2, one,
244 & t( i1, i1 ), ldt, t( 1, i1 ), ldt )
245*
246*
247*
248* Y = (Y1,Y2); L = [ L1 0 ]; T = [T1 T3]
249* [ A(1:N1,J1:N) L2 ] [ 0 T2]
250*
251 END IF
252*
253 RETURN
254*
255* End of DGELQT3
256*
257 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
recursive subroutine dgelqt3(m, n, a, lda, t, ldt, info)
DGELQT3 recursively computes a LQ factorization of a general real or complex matrix using the compact...
Definition dgelqt3.f:131
subroutine dgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
DGEMM
Definition dgemm.f:188
subroutine dlarfg(n, alpha, x, incx, tau)
DLARFG generates an elementary reflector (Householder matrix).
Definition dlarfg.f:106
subroutine dtrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
DTRMM
Definition dtrmm.f:177