LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dgges3()

subroutine dgges3 ( character jobvsl,
character jobvsr,
character sort,
external selctg,
integer n,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( ldb, * ) b,
integer ldb,
integer sdim,
double precision, dimension( * ) alphar,
double precision, dimension( * ) alphai,
double precision, dimension( * ) beta,
double precision, dimension( ldvsl, * ) vsl,
integer ldvsl,
double precision, dimension( ldvsr, * ) vsr,
integer ldvsr,
double precision, dimension( * ) work,
integer lwork,
logical, dimension( * ) bwork,
integer info )

DGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices (blocked algorithm)

Download DGGES3 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DGGES3 computes for a pair of N-by-N real nonsymmetric matrices (A,B),
!> the generalized eigenvalues, the generalized real Schur form (S,T),
!> optionally, the left and/or right matrices of Schur vectors (VSL and
!> VSR). This gives the generalized Schur factorization
!>
!>          (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )
!>
!> Optionally, it also orders the eigenvalues so that a selected cluster
!> of eigenvalues appears in the leading diagonal blocks of the upper
!> quasi-triangular matrix S and the upper triangular matrix T.The
!> leading columns of VSL and VSR then form an orthonormal basis for the
!> corresponding left and right eigenspaces (deflating subspaces).
!>
!> (If only the generalized eigenvalues are needed, use the driver
!> DGGEV instead, which is faster.)
!>
!> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
!> or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
!> usually represented as the pair (alpha,beta), as there is a
!> reasonable interpretation for beta=0 or both being zero.
!>
!> A pair of matrices (S,T) is in generalized real Schur form if T is
!> upper triangular with non-negative diagonal and S is block upper
!> triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
!> to real generalized eigenvalues, while 2-by-2 blocks of S will be
!>  by making the corresponding elements of T have the
!> form:
!>         [  a  0  ]
!>         [  0  b  ]
!>
!> and the pair of corresponding 2-by-2 blocks in S and T will have a
!> complex conjugate pair of generalized eigenvalues.
!>
!> 
Parameters
[in]JOBVSL
!>          JOBVSL is CHARACTER*1
!>          = 'N':  do not compute the left Schur vectors;
!>          = 'V':  compute the left Schur vectors.
!> 
[in]JOBVSR
!>          JOBVSR is CHARACTER*1
!>          = 'N':  do not compute the right Schur vectors;
!>          = 'V':  compute the right Schur vectors.
!> 
[in]SORT
!>          SORT is CHARACTER*1
!>          Specifies whether or not to order the eigenvalues on the
!>          diagonal of the generalized Schur form.
!>          = 'N':  Eigenvalues are not ordered;
!>          = 'S':  Eigenvalues are ordered (see SELCTG);
!> 
[in]SELCTG
!>          SELCTG is a LOGICAL FUNCTION of three DOUBLE PRECISION arguments
!>          SELCTG must be declared EXTERNAL in the calling subroutine.
!>          If SORT = 'N', SELCTG is not referenced.
!>          If SORT = 'S', SELCTG is used to select eigenvalues to sort
!>          to the top left of the Schur form.
!>          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
!>          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
!>          one of a complex conjugate pair of eigenvalues is selected,
!>          then both complex eigenvalues are selected.
!>
!>          Note that in the ill-conditioned case, a selected complex
!>          eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
!>          BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
!>          in this case.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
!> 
[in,out]A
!>          A is DOUBLE PRECISION array, dimension (LDA, N)
!>          On entry, the first of the pair of matrices.
!>          On exit, A has been overwritten by its generalized Schur
!>          form S.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of A.  LDA >= max(1,N).
!> 
[in,out]B
!>          B is DOUBLE PRECISION array, dimension (LDB, N)
!>          On entry, the second of the pair of matrices.
!>          On exit, B has been overwritten by its generalized Schur
!>          form T.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of B.  LDB >= max(1,N).
!> 
[out]SDIM
!>          SDIM is INTEGER
!>          If SORT = 'N', SDIM = 0.
!>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
!>          for which SELCTG is true.  (Complex conjugate pairs for which
!>          SELCTG is true for either eigenvalue count as 2.)
!> 
[out]ALPHAR
!>          ALPHAR is DOUBLE PRECISION array, dimension (N)
!> 
[out]ALPHAI
!>          ALPHAI is DOUBLE PRECISION array, dimension (N)
!> 
[out]BETA
!>          BETA is DOUBLE PRECISION array, dimension (N)
!>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
!>          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i,
!>          and  BETA(j),j=1,...,N are the diagonals of the complex Schur
!>          form (S,T) that would result if the 2-by-2 diagonal blocks of
!>          the real Schur form of (A,B) were further reduced to
!>          triangular form using 2-by-2 complex unitary transformations.
!>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
!>          positive, then the j-th and (j+1)-st eigenvalues are a
!>          complex conjugate pair, with ALPHAI(j+1) negative.
!>
!>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
!>          may easily over- or underflow, and BETA(j) may even be zero.
!>          Thus, the user should avoid naively computing the ratio.
!>          However, ALPHAR and ALPHAI will be always less than and
!>          usually comparable with norm(A) in magnitude, and BETA always
!>          less than and usually comparable with norm(B).
!> 
[out]VSL
!>          VSL is DOUBLE PRECISION array, dimension (LDVSL,N)
!>          If JOBVSL = 'V', VSL will contain the left Schur vectors.
!>          Not referenced if JOBVSL = 'N'.
!> 
[in]LDVSL
!>          LDVSL is INTEGER
!>          The leading dimension of the matrix VSL. LDVSL >=1, and
!>          if JOBVSL = 'V', LDVSL >= N.
!> 
[out]VSR
!>          VSR is DOUBLE PRECISION array, dimension (LDVSR,N)
!>          If JOBVSR = 'V', VSR will contain the right Schur vectors.
!>          Not referenced if JOBVSR = 'N'.
!> 
[in]LDVSR
!>          LDVSR is INTEGER
!>          The leading dimension of the matrix VSR. LDVSR >= 1, and
!>          if JOBVSR = 'V', LDVSR >= N.
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If N = 0, LWORK >= 1, else LWORK >= 6*N+16.
!>          For good performance, LWORK must generally be larger.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]BWORK
!>          BWORK is LOGICAL array, dimension (N)
!>          Not referenced if SORT = 'N'.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          = 1,...,N:
!>                The QZ iteration failed.  (A,B) are not in Schur
!>                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
!>                be correct for j=INFO+1,...,N.
!>          > N:  =N+1: other than QZ iteration failed in DLAQZ0.
!>                =N+2: after reordering, roundoff changed values of
!>                      some complex eigenvalues so that leading
!>                      eigenvalues in the Generalized Schur form no
!>                      longer satisfy SELCTG=.TRUE.  This could also
!>                      be caused due to scaling.
!>                =N+3: reordering failed in DTGSEN.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 279 of file dgges3.f.

282*
283* -- LAPACK driver routine --
284* -- LAPACK is a software package provided by Univ. of Tennessee, --
285* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
286*
287* .. Scalar Arguments ..
288 CHARACTER JOBVSL, JOBVSR, SORT
289 INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
290* ..
291* .. Array Arguments ..
292 LOGICAL BWORK( * )
293 DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
294 $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
295 $ VSR( LDVSR, * ), WORK( * )
296* ..
297* .. Function Arguments ..
298 LOGICAL SELCTG
299 EXTERNAL selctg
300* ..
301*
302* =====================================================================
303*
304* .. Parameters ..
305 DOUBLE PRECISION ZERO, ONE
306 parameter( zero = 0.0d+0, one = 1.0d+0 )
307* ..
308* .. Local Scalars ..
309 LOGICAL CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
310 $ LQUERY, LST2SL, WANTST
311 INTEGER I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
312 $ ILO, IP, IRIGHT, IROWS, ITAU, IWRK, LWKOPT,
313 $ LWKMIN
314 DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
315 $ PVSR, SAFMAX, SAFMIN, SMLNUM
316* ..
317* .. Local Arrays ..
318 INTEGER IDUM( 1 )
319 DOUBLE PRECISION DIF( 2 )
320* ..
321* .. External Subroutines ..
322 EXTERNAL dgeqrf, dggbak, dggbal, dgghd3, dlaqz0,
323 $ dlacpy,
325* ..
326* .. External Functions ..
327 LOGICAL LSAME
328 DOUBLE PRECISION DLAMCH, DLANGE
329 EXTERNAL lsame, dlamch, dlange
330* ..
331* .. Intrinsic Functions ..
332 INTRINSIC abs, max, sqrt
333* ..
334* .. Executable Statements ..
335*
336* Decode the input arguments
337*
338 IF( lsame( jobvsl, 'N' ) ) THEN
339 ijobvl = 1
340 ilvsl = .false.
341 ELSE IF( lsame( jobvsl, 'V' ) ) THEN
342 ijobvl = 2
343 ilvsl = .true.
344 ELSE
345 ijobvl = -1
346 ilvsl = .false.
347 END IF
348*
349 IF( lsame( jobvsr, 'N' ) ) THEN
350 ijobvr = 1
351 ilvsr = .false.
352 ELSE IF( lsame( jobvsr, 'V' ) ) THEN
353 ijobvr = 2
354 ilvsr = .true.
355 ELSE
356 ijobvr = -1
357 ilvsr = .false.
358 END IF
359*
360 wantst = lsame( sort, 'S' )
361*
362* Test the input arguments
363*
364 info = 0
365 lquery = ( lwork.EQ.-1 )
366 IF( n.EQ.0 ) THEN
367 lwkmin = 1
368 ELSE
369 lwkmin = 6*n+16
370 END IF
371*
372 IF( ijobvl.LE.0 ) THEN
373 info = -1
374 ELSE IF( ijobvr.LE.0 ) THEN
375 info = -2
376 ELSE IF( ( .NOT.wantst ) .AND.
377 $ ( .NOT.lsame( sort, 'N' ) ) ) THEN
378 info = -3
379 ELSE IF( n.LT.0 ) THEN
380 info = -5
381 ELSE IF( lda.LT.max( 1, n ) ) THEN
382 info = -7
383 ELSE IF( ldb.LT.max( 1, n ) ) THEN
384 info = -9
385 ELSE IF( ldvsl.LT.1 .OR. ( ilvsl .AND. ldvsl.LT.n ) ) THEN
386 info = -15
387 ELSE IF( ldvsr.LT.1 .OR. ( ilvsr .AND. ldvsr.LT.n ) ) THEN
388 info = -17
389 ELSE IF( lwork.LT.lwkmin .AND. .NOT.lquery ) THEN
390 info = -19
391 END IF
392*
393* Compute workspace
394*
395 IF( info.EQ.0 ) THEN
396 CALL dgeqrf( n, n, b, ldb, work, work, -1, ierr )
397 lwkopt = max( lwkmin, 3*n+int( work( 1 ) ) )
398 CALL dormqr( 'L', 'T', n, n, n, b, ldb, work, a, lda, work,
399 $ -1, ierr )
400 lwkopt = max( lwkopt, 3*n+int( work( 1 ) ) )
401 IF( ilvsl ) THEN
402 CALL dorgqr( n, n, n, vsl, ldvsl, work, work, -1, ierr )
403 lwkopt = max( lwkopt, 3*n+int( work( 1 ) ) )
404 END IF
405 CALL dgghd3( jobvsl, jobvsr, n, 1, n, a, lda, b, ldb, vsl,
406 $ ldvsl, vsr, ldvsr, work, -1, ierr )
407 lwkopt = max( lwkopt, 3*n+int( work( 1 ) ) )
408 CALL dlaqz0( 'S', jobvsl, jobvsr, n, 1, n, a, lda, b, ldb,
409 $ alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr,
410 $ work, -1, 0, ierr )
411 lwkopt = max( lwkopt, 2*n+int( work( 1 ) ) )
412 IF( wantst ) THEN
413 CALL dtgsen( 0, ilvsl, ilvsr, bwork, n, a, lda, b, ldb,
414 $ alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr,
415 $ sdim, pvsl, pvsr, dif, work, -1, idum, 1,
416 $ ierr )
417 lwkopt = max( lwkopt, 2*n+int( work( 1 ) ) )
418 END IF
419 IF( n.EQ.0 ) THEN
420 work( 1 ) = 1
421 ELSE
422 work( 1 ) = lwkopt
423 END IF
424 END IF
425*
426 IF( info.NE.0 ) THEN
427 CALL xerbla( 'DGGES3 ', -info )
428 RETURN
429 ELSE IF( lquery ) THEN
430 RETURN
431 END IF
432*
433* Quick return if possible
434*
435 IF( n.EQ.0 ) THEN
436 sdim = 0
437 RETURN
438 END IF
439*
440* Get machine constants
441*
442 eps = dlamch( 'P' )
443 safmin = dlamch( 'S' )
444 safmax = one / safmin
445 smlnum = sqrt( safmin ) / eps
446 bignum = one / smlnum
447*
448* Scale A if max element outside range [SMLNUM,BIGNUM]
449*
450 anrm = dlange( 'M', n, n, a, lda, work )
451 ilascl = .false.
452 IF( anrm.GT.zero .AND. anrm.LT.smlnum ) THEN
453 anrmto = smlnum
454 ilascl = .true.
455 ELSE IF( anrm.GT.bignum ) THEN
456 anrmto = bignum
457 ilascl = .true.
458 END IF
459 IF( ilascl )
460 $ CALL dlascl( 'G', 0, 0, anrm, anrmto, n, n, a, lda, ierr )
461*
462* Scale B if max element outside range [SMLNUM,BIGNUM]
463*
464 bnrm = dlange( 'M', n, n, b, ldb, work )
465 ilbscl = .false.
466 IF( bnrm.GT.zero .AND. bnrm.LT.smlnum ) THEN
467 bnrmto = smlnum
468 ilbscl = .true.
469 ELSE IF( bnrm.GT.bignum ) THEN
470 bnrmto = bignum
471 ilbscl = .true.
472 END IF
473 IF( ilbscl )
474 $ CALL dlascl( 'G', 0, 0, bnrm, bnrmto, n, n, b, ldb, ierr )
475*
476* Permute the matrix to make it more nearly triangular
477*
478 ileft = 1
479 iright = n + 1
480 iwrk = iright + n
481 CALL dggbal( 'P', n, a, lda, b, ldb, ilo, ihi, work( ileft ),
482 $ work( iright ), work( iwrk ), ierr )
483*
484* Reduce B to triangular form (QR decomposition of B)
485*
486 irows = ihi + 1 - ilo
487 icols = n + 1 - ilo
488 itau = iwrk
489 iwrk = itau + irows
490 CALL dgeqrf( irows, icols, b( ilo, ilo ), ldb, work( itau ),
491 $ work( iwrk ), lwork+1-iwrk, ierr )
492*
493* Apply the orthogonal transformation to matrix A
494*
495 CALL dormqr( 'L', 'T', irows, icols, irows, b( ilo, ilo ), ldb,
496 $ work( itau ), a( ilo, ilo ), lda, work( iwrk ),
497 $ lwork+1-iwrk, ierr )
498*
499* Initialize VSL
500*
501 IF( ilvsl ) THEN
502 CALL dlaset( 'Full', n, n, zero, one, vsl, ldvsl )
503 IF( irows.GT.1 ) THEN
504 CALL dlacpy( 'L', irows-1, irows-1, b( ilo+1, ilo ), ldb,
505 $ vsl( ilo+1, ilo ), ldvsl )
506 END IF
507 CALL dorgqr( irows, irows, irows, vsl( ilo, ilo ), ldvsl,
508 $ work( itau ), work( iwrk ), lwork+1-iwrk, ierr )
509 END IF
510*
511* Initialize VSR
512*
513 IF( ilvsr )
514 $ CALL dlaset( 'Full', n, n, zero, one, vsr, ldvsr )
515*
516* Reduce to generalized Hessenberg form
517*
518 CALL dgghd3( jobvsl, jobvsr, n, ilo, ihi, a, lda, b, ldb, vsl,
519 $ ldvsl, vsr, ldvsr, work( iwrk ), lwork+1-iwrk,
520 $ ierr )
521*
522* Perform QZ algorithm, computing Schur vectors if desired
523*
524 iwrk = itau
525 CALL dlaqz0( 'S', jobvsl, jobvsr, n, ilo, ihi, a, lda, b, ldb,
526 $ alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr,
527 $ work( iwrk ), lwork+1-iwrk, 0, ierr )
528 IF( ierr.NE.0 ) THEN
529 IF( ierr.GT.0 .AND. ierr.LE.n ) THEN
530 info = ierr
531 ELSE IF( ierr.GT.n .AND. ierr.LE.2*n ) THEN
532 info = ierr - n
533 ELSE
534 info = n + 1
535 END IF
536 GO TO 50
537 END IF
538*
539* Sort eigenvalues ALPHA/BETA if desired
540*
541 sdim = 0
542 IF( wantst ) THEN
543*
544* Undo scaling on eigenvalues before SELCTGing
545*
546 IF( ilascl ) THEN
547 CALL dlascl( 'G', 0, 0, anrmto, anrm, n, 1, alphar, n,
548 $ ierr )
549 CALL dlascl( 'G', 0, 0, anrmto, anrm, n, 1, alphai, n,
550 $ ierr )
551 END IF
552 IF( ilbscl )
553 $ CALL dlascl( 'G', 0, 0, bnrmto, bnrm, n, 1, beta, n,
554 $ ierr )
555*
556* Select eigenvalues
557*
558 DO 10 i = 1, n
559 bwork( i ) = selctg( alphar( i ), alphai( i ),
560 $ beta( i ) )
561 10 CONTINUE
562*
563 CALL dtgsen( 0, ilvsl, ilvsr, bwork, n, a, lda, b, ldb,
564 $ alphar,
565 $ alphai, beta, vsl, ldvsl, vsr, ldvsr, sdim, pvsl,
566 $ pvsr, dif, work( iwrk ), lwork-iwrk+1, idum, 1,
567 $ ierr )
568 IF( ierr.EQ.1 )
569 $ info = n + 3
570*
571 END IF
572*
573* Apply back-permutation to VSL and VSR
574*
575 IF( ilvsl )
576 $ CALL dggbak( 'P', 'L', n, ilo, ihi, work( ileft ),
577 $ work( iright ), n, vsl, ldvsl, ierr )
578*
579 IF( ilvsr )
580 $ CALL dggbak( 'P', 'R', n, ilo, ihi, work( ileft ),
581 $ work( iright ), n, vsr, ldvsr, ierr )
582*
583* Check if unscaling would cause over/underflow, if so, rescale
584* (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
585* B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
586*
587 IF( ilascl ) THEN
588 DO 20 i = 1, n
589 IF( alphai( i ).NE.zero ) THEN
590 IF( ( alphar( i ) / safmax ).GT.( anrmto / anrm ) .OR.
591 $ ( safmin / alphar( i ) ).GT.( anrm / anrmto ) ) THEN
592 work( 1 ) = abs( a( i, i ) / alphar( i ) )
593 beta( i ) = beta( i )*work( 1 )
594 alphar( i ) = alphar( i )*work( 1 )
595 alphai( i ) = alphai( i )*work( 1 )
596 ELSE IF( ( alphai( i ) / safmax ).GT.
597 $ ( anrmto / anrm ) .OR.
598 $ ( safmin / alphai( i ) ).GT.( anrm / anrmto ) )
599 $ THEN
600 work( 1 ) = abs( a( i, i+1 ) / alphai( i ) )
601 beta( i ) = beta( i )*work( 1 )
602 alphar( i ) = alphar( i )*work( 1 )
603 alphai( i ) = alphai( i )*work( 1 )
604 END IF
605 END IF
606 20 CONTINUE
607 END IF
608*
609 IF( ilbscl ) THEN
610 DO 30 i = 1, n
611 IF( alphai( i ).NE.zero ) THEN
612 IF( ( beta( i ) / safmax ).GT.( bnrmto / bnrm ) .OR.
613 $ ( safmin / beta( i ) ).GT.( bnrm / bnrmto ) ) THEN
614 work( 1 ) = abs( b( i, i ) / beta( i ) )
615 beta( i ) = beta( i )*work( 1 )
616 alphar( i ) = alphar( i )*work( 1 )
617 alphai( i ) = alphai( i )*work( 1 )
618 END IF
619 END IF
620 30 CONTINUE
621 END IF
622*
623* Undo scaling
624*
625 IF( ilascl ) THEN
626 CALL dlascl( 'H', 0, 0, anrmto, anrm, n, n, a, lda, ierr )
627 CALL dlascl( 'G', 0, 0, anrmto, anrm, n, 1, alphar, n,
628 $ ierr )
629 CALL dlascl( 'G', 0, 0, anrmto, anrm, n, 1, alphai, n,
630 $ ierr )
631 END IF
632*
633 IF( ilbscl ) THEN
634 CALL dlascl( 'U', 0, 0, bnrmto, bnrm, n, n, b, ldb, ierr )
635 CALL dlascl( 'G', 0, 0, bnrmto, bnrm, n, 1, beta, n, ierr )
636 END IF
637*
638 IF( wantst ) THEN
639*
640* Check if reordering is correct
641*
642 lastsl = .true.
643 lst2sl = .true.
644 sdim = 0
645 ip = 0
646 DO 40 i = 1, n
647 cursl = selctg( alphar( i ), alphai( i ), beta( i ) )
648 IF( alphai( i ).EQ.zero ) THEN
649 IF( cursl )
650 $ sdim = sdim + 1
651 ip = 0
652 IF( cursl .AND. .NOT.lastsl )
653 $ info = n + 2
654 ELSE
655 IF( ip.EQ.1 ) THEN
656*
657* Last eigenvalue of conjugate pair
658*
659 cursl = cursl .OR. lastsl
660 lastsl = cursl
661 IF( cursl )
662 $ sdim = sdim + 2
663 ip = -1
664 IF( cursl .AND. .NOT.lst2sl )
665 $ info = n + 2
666 ELSE
667*
668* First eigenvalue of conjugate pair
669*
670 ip = 1
671 END IF
672 END IF
673 lst2sl = lastsl
674 lastsl = cursl
675 40 CONTINUE
676*
677 END IF
678*
679 50 CONTINUE
680*
681 work( 1 ) = lwkopt
682*
683 RETURN
684*
685* End of DGGES3
686*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dgeqrf(m, n, a, lda, tau, work, lwork, info)
DGEQRF
Definition dgeqrf.f:144
subroutine dggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
DGGBAK
Definition dggbak.f:146
subroutine dggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)
DGGBAL
Definition dggbal.f:175
subroutine dgghd3(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, work, lwork, info)
DGGHD3
Definition dgghd3.f:229
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:101
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function dlange(norm, m, n, a, lda, work)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition dlange.f:112
recursive subroutine dlaqz0(wants, wantq, wantz, n, ilo, ihi, a, lda, b, ldb, alphar, alphai, beta, q, ldq, z, ldz, work, lwork, rec, info)
DLAQZ0
Definition dlaqz0.f:305
subroutine dlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition dlascl.f:142
subroutine dlaset(uplo, m, n, alpha, beta, a, lda)
DLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition dlaset.f:108
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine dtgsen(ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar, alphai, beta, q, ldq, z, ldz, m, pl, pr, dif, work, lwork, iwork, liwork, info)
DTGSEN
Definition dtgsen.f:450
subroutine dorgqr(m, n, k, a, lda, tau, work, lwork, info)
DORGQR
Definition dorgqr.f:126
subroutine dormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMQR
Definition dormqr.f:165
Here is the call graph for this function:
Here is the caller graph for this function: