LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dtgsen | ( | integer | ijob, |
logical | wantq, | ||
logical | wantz, | ||
logical, dimension( * ) | select, | ||
integer | n, | ||
double precision, dimension( lda, * ) | a, | ||
integer | lda, | ||
double precision, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
double precision, dimension( * ) | alphar, | ||
double precision, dimension( * ) | alphai, | ||
double precision, dimension( * ) | beta, | ||
double precision, dimension( ldq, * ) | q, | ||
integer | ldq, | ||
double precision, dimension( ldz, * ) | z, | ||
integer | ldz, | ||
integer | m, | ||
double precision | pl, | ||
double precision | pr, | ||
double precision, dimension( * ) | dif, | ||
double precision, dimension( * ) | work, | ||
integer | lwork, | ||
integer, dimension( * ) | iwork, | ||
integer | liwork, | ||
integer | info ) |
DTGSEN
Download DTGSEN + dependencies [TGZ] [ZIP] [TXT]
!> !> DTGSEN reorders the generalized real Schur decomposition of a real !> matrix pair (A, B) (in terms of an orthonormal equivalence trans- !> formation Q**T * (A, B) * Z), so that a selected cluster of eigenvalues !> appears in the leading diagonal blocks of the upper quasi-triangular !> matrix A and the upper triangular B. The leading columns of Q and !> Z form orthonormal bases of the corresponding left and right eigen- !> spaces (deflating subspaces). (A, B) must be in generalized real !> Schur canonical form (as returned by DGGES), i.e. A is block upper !> triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper !> triangular. !> !> DTGSEN also computes the generalized eigenvalues !> !> w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j) !> !> of the reordered matrix pair (A, B). !> !> Optionally, DTGSEN computes the estimates of reciprocal condition !> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11), !> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s) !> between the matrix pairs (A11, B11) and (A22,B22) that correspond to !> the selected cluster and the eigenvalues outside the cluster, resp., !> and norms of onto left and right eigenspaces w.r.t. !> the selected cluster in the (1,1)-block. !>
[in] | IJOB | !> IJOB is INTEGER !> Specifies whether condition numbers are required for the !> cluster of eigenvalues (PL and PR) or the deflating subspaces !> (Difu and Difl): !> =0: Only reorder w.r.t. SELECT. No extras. !> =1: Reciprocal of norms of onto left and right !> eigenspaces w.r.t. the selected cluster (PL and PR). !> =2: Upper bounds on Difu and Difl. F-norm-based estimate !> (DIF(1:2)). !> =3: Estimate of Difu and Difl. 1-norm-based estimate !> (DIF(1:2)). !> About 5 times as expensive as IJOB = 2. !> =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic !> version to get it all. !> =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above) !> |
[in] | WANTQ | !> WANTQ is LOGICAL !> .TRUE. : update the left transformation matrix Q; !> .FALSE.: do not update Q. !> |
[in] | WANTZ | !> WANTZ is LOGICAL !> .TRUE. : update the right transformation matrix Z; !> .FALSE.: do not update Z. !> |
[in] | SELECT | !> SELECT is LOGICAL array, dimension (N) !> SELECT specifies the eigenvalues in the selected cluster. !> To select a real eigenvalue w(j), SELECT(j) must be set to !> .TRUE.. To select a complex conjugate pair of eigenvalues !> w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, !> either SELECT(j) or SELECT(j+1) or both must be set to !> .TRUE.; a complex conjugate pair of eigenvalues must be !> either both included in the cluster or both excluded. !> |
[in] | N | !> N is INTEGER !> The order of the matrices A and B. N >= 0. !> |
[in,out] | A | !> A is DOUBLE PRECISION array, dimension(LDA,N) !> On entry, the upper quasi-triangular matrix A, with (A, B) in !> generalized real Schur canonical form. !> On exit, A is overwritten by the reordered matrix A. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
[in,out] | B | !> B is DOUBLE PRECISION array, dimension(LDB,N) !> On entry, the upper triangular matrix B, with (A, B) in !> generalized real Schur canonical form. !> On exit, B is overwritten by the reordered matrix B. !> |
[in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
[out] | ALPHAR | !> ALPHAR is DOUBLE PRECISION array, dimension (N) !> |
[out] | ALPHAI | !> ALPHAI is DOUBLE PRECISION array, dimension (N) !> |
[out] | BETA | !> BETA is DOUBLE PRECISION array, dimension (N) !> !> On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will !> be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i !> and BETA(j),j=1,...,N are the diagonals of the complex Schur !> form (S,T) that would result if the 2-by-2 diagonal blocks of !> the real generalized Schur form of (A,B) were further reduced !> to triangular form using complex unitary transformations. !> If ALPHAI(j) is zero, then the j-th eigenvalue is real; if !> positive, then the j-th and (j+1)-st eigenvalues are a !> complex conjugate pair, with ALPHAI(j+1) negative. !> |
[in,out] | Q | !> Q is DOUBLE PRECISION array, dimension (LDQ,N) !> On entry, if WANTQ = .TRUE., Q is an N-by-N matrix. !> On exit, Q has been postmultiplied by the left orthogonal !> transformation matrix which reorder (A, B); The leading M !> columns of Q form orthonormal bases for the specified pair of !> left eigenspaces (deflating subspaces). !> If WANTQ = .FALSE., Q is not referenced. !> |
[in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= 1; !> and if WANTQ = .TRUE., LDQ >= N. !> |
[in,out] | Z | !> Z is DOUBLE PRECISION array, dimension (LDZ,N) !> On entry, if WANTZ = .TRUE., Z is an N-by-N matrix. !> On exit, Z has been postmultiplied by the left orthogonal !> transformation matrix which reorder (A, B); The leading M !> columns of Z form orthonormal bases for the specified pair of !> left eigenspaces (deflating subspaces). !> If WANTZ = .FALSE., Z is not referenced. !> |
[in] | LDZ | !> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1; !> If WANTZ = .TRUE., LDZ >= N. !> |
[out] | M | !> M is INTEGER !> The dimension of the specified pair of left and right eigen- !> spaces (deflating subspaces). 0 <= M <= N. !> |
[out] | PL | !> PL is DOUBLE PRECISION !> |
[out] | PR | !> PR is DOUBLE PRECISION !> !> If IJOB = 1, 4 or 5, PL, PR are lower bounds on the !> reciprocal of the norm of onto left and right !> eigenspaces with respect to the selected cluster. !> 0 < PL, PR <= 1. !> If M = 0 or M = N, PL = PR = 1. !> If IJOB = 0, 2 or 3, PL and PR are not referenced. !> |
[out] | DIF | !> DIF is DOUBLE PRECISION array, dimension (2). !> If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl. !> If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on !> Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based !> estimates of Difu and Difl. !> If M = 0 or N, DIF(1:2) = F-norm([A, B]). !> If IJOB = 0 or 1, DIF is not referenced. !> |
[out] | WORK | !> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
[in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= 4*N+16. !> If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)). !> If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)). !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
[out] | IWORK | !> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. !> |
[in] | LIWORK | !> LIWORK is INTEGER !> The dimension of the array IWORK. LIWORK >= 1. !> If IJOB = 1, 2 or 4, LIWORK >= N+6. !> If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6). !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal size of the IWORK array, !> returns this value as the first entry of the IWORK array, and !> no error message related to LIWORK is issued by XERBLA. !> |
[out] | INFO | !> INFO is INTEGER !> =0: Successful exit. !> <0: If INFO = -i, the i-th argument had an illegal value. !> =1: Reordering of (A, B) failed because the transformed !> matrix pair (A, B) would be too far from generalized !> Schur form; the problem is very ill-conditioned. !> (A, B) may have been partially reordered. !> If requested, 0 is returned in DIF(*), PL and PR. !> |
!> !> DTGSEN first collects the selected eigenvalues by computing !> orthogonal U and W that move them to the top left corner of (A, B). !> In other words, the selected eigenvalues are the eigenvalues of !> (A11, B11) in: !> !> U**T*(A, B)*W = (A11 A12) (B11 B12) n1 !> ( 0 A22),( 0 B22) n2 !> n1 n2 n1 n2 !> !> where N = n1+n2 and U**T means the transpose of U. The first n1 columns !> of U and W span the specified pair of left and right eigenspaces !> (deflating subspaces) of (A, B). !> !> If (A, B) has been obtained from the generalized real Schur !> decomposition of a matrix pair (C, D) = Q*(A, B)*Z**T, then the !> reordered generalized real Schur form of (C, D) is given by !> !> (C, D) = (Q*U)*(U**T*(A, B)*W)*(Z*W)**T, !> !> and the first n1 columns of Q*U and Z*W span the corresponding !> deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.). !> !> Note that if the selected eigenvalue is sufficiently ill-conditioned, !> then its value may differ significantly from its value before !> reordering. !> !> The reciprocal condition numbers of the left and right eigenspaces !> spanned by the first n1 columns of U and W (or Q*U and Z*W) may !> be returned in DIF(1:2), corresponding to Difu and Difl, resp. !> !> The Difu and Difl are defined as: !> !> Difu[(A11, B11), (A22, B22)] = sigma-min( Zu ) !> and !> Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)], !> !> where sigma-min(Zu) is the smallest singular value of the !> (2*n1*n2)-by-(2*n1*n2) matrix !> !> Zu = [ kron(In2, A11) -kron(A22**T, In1) ] !> [ kron(In2, B11) -kron(B22**T, In1) ]. !> !> Here, Inx is the identity matrix of size nx and A22**T is the !> transpose of A22. kron(X, Y) is the Kronecker product between !> the matrices X and Y. !> !> When DIF(2) is small, small changes in (A, B) can cause large changes !> in the deflating subspace. An approximate (asymptotic) bound on the !> maximum angular error in the computed deflating subspaces is !> !> EPS * norm((A, B)) / DIF(2), !> !> where EPS is the machine precision. !> !> The reciprocal norm of the projectors on the left and right !> eigenspaces associated with (A11, B11) may be returned in PL and PR. !> They are computed as follows. First we compute L and R so that !> P*(A, B)*Q is block diagonal, where !> !> P = ( I -L ) n1 Q = ( I R ) n1 !> ( 0 I ) n2 and ( 0 I ) n2 !> n1 n2 n1 n2 !> !> and (L, R) is the solution to the generalized Sylvester equation !> !> A11*R - L*A22 = -A12 !> B11*R - L*B22 = -B12 !> !> Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2). !> An approximate (asymptotic) bound on the average absolute error of !> the selected eigenvalues is !> !> EPS * norm((A, B)) / PL. !> !> There are also global error bounds which valid for perturbations up !> to a certain restriction: A lower bound (x) on the smallest !> F-norm(E,F) for which an eigenvalue of (A11, B11) may move and !> coalesce with an eigenvalue of (A22, B22) under perturbation (E,F), !> (i.e. (A + E, B + F), is !> !> x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)). !> !> An approximate bound on x can be computed from DIF(1:2), PL and PR. !> !> If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed !> (L', R') and unperturbed (L, R) left and right deflating subspaces !> associated with the selected cluster in the (1,1)-blocks can be !> bounded as !> !> max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2)) !> max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2)) !> !> See LAPACK User's Guide section 4.11 or the following references !> for more information. !> !> Note that if the default method for computing the Frobenius-norm- !> based estimate DIF is not wanted (see DLATDF), then the parameter !> IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF !> (IJOB = 2 will be used)). See DTGSYL for more details. !>
!> !> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the !> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in !> M.S. Moonen et al (eds), Linear Algebra for Large Scale and !> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. !> !> [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified !> Eigenvalues of a Regular Matrix Pair (A, B) and Condition !> Estimation: Theory, Algorithms and Software, !> Report UMINF - 94.04, Department of Computing Science, Umea !> University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working !> Note 87. To appear in Numerical Algorithms, 1996. !> !> [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software !> for Solving the Generalized Sylvester Equation and Estimating the !> Separation between Regular Matrix Pairs, Report UMINF - 93.23, !> Department of Computing Science, Umea University, S-901 87 Umea, !> Sweden, December 1993, Revised April 1994, Also as LAPACK Working !> Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, !> 1996. !>
Definition at line 446 of file dtgsen.f.