LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cgbcon.f
Go to the documentation of this file.
1*> \brief \b CGBCON
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CGBCON + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbcon.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbcon.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbcon.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND,
22* WORK, RWORK, INFO )
23*
24* .. Scalar Arguments ..
25* CHARACTER NORM
26* INTEGER INFO, KL, KU, LDAB, N
27* REAL ANORM, RCOND
28* ..
29* .. Array Arguments ..
30* INTEGER IPIV( * )
31* REAL RWORK( * )
32* COMPLEX AB( LDAB, * ), WORK( * )
33* ..
34*
35*
36*> \par Purpose:
37* =============
38*>
39*> \verbatim
40*>
41*> CGBCON estimates the reciprocal of the condition number of a complex
42*> general band matrix A, in either the 1-norm or the infinity-norm,
43*> using the LU factorization computed by CGBTRF.
44*>
45*> An estimate is obtained for norm(inv(A)), and the reciprocal of the
46*> condition number is computed as
47*> RCOND = 1 / ( norm(A) * norm(inv(A)) ).
48*> \endverbatim
49*
50* Arguments:
51* ==========
52*
53*> \param[in] NORM
54*> \verbatim
55*> NORM is CHARACTER*1
56*> Specifies whether the 1-norm condition number or the
57*> infinity-norm condition number is required:
58*> = '1' or 'O': 1-norm;
59*> = 'I': Infinity-norm.
60*> \endverbatim
61*>
62*> \param[in] N
63*> \verbatim
64*> N is INTEGER
65*> The order of the matrix A. N >= 0.
66*> \endverbatim
67*>
68*> \param[in] KL
69*> \verbatim
70*> KL is INTEGER
71*> The number of subdiagonals within the band of A. KL >= 0.
72*> \endverbatim
73*>
74*> \param[in] KU
75*> \verbatim
76*> KU is INTEGER
77*> The number of superdiagonals within the band of A. KU >= 0.
78*> \endverbatim
79*>
80*> \param[in] AB
81*> \verbatim
82*> AB is COMPLEX array, dimension (LDAB,N)
83*> Details of the LU factorization of the band matrix A, as
84*> computed by CGBTRF. U is stored as an upper triangular band
85*> matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
86*> the multipliers used during the factorization are stored in
87*> rows KL+KU+2 to 2*KL+KU+1.
88*> \endverbatim
89*>
90*> \param[in] LDAB
91*> \verbatim
92*> LDAB is INTEGER
93*> The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
94*> \endverbatim
95*>
96*> \param[in] IPIV
97*> \verbatim
98*> IPIV is INTEGER array, dimension (N)
99*> The pivot indices; for 1 <= i <= N, row i of the matrix was
100*> interchanged with row IPIV(i).
101*> \endverbatim
102*>
103*> \param[in] ANORM
104*> \verbatim
105*> ANORM is REAL
106*> If NORM = '1' or 'O', the 1-norm of the original matrix A.
107*> If NORM = 'I', the infinity-norm of the original matrix A.
108*> \endverbatim
109*>
110*> \param[out] RCOND
111*> \verbatim
112*> RCOND is REAL
113*> The reciprocal of the condition number of the matrix A,
114*> computed as RCOND = 1/(norm(A) * norm(inv(A))).
115*> \endverbatim
116*>
117*> \param[out] WORK
118*> \verbatim
119*> WORK is COMPLEX array, dimension (2*N)
120*> \endverbatim
121*>
122*> \param[out] RWORK
123*> \verbatim
124*> RWORK is REAL array, dimension (N)
125*> \endverbatim
126*>
127*> \param[out] INFO
128*> \verbatim
129*> INFO is INTEGER
130*> = 0: successful exit
131*> < 0: if INFO = -i, the i-th argument had an illegal value
132*> \endverbatim
133*
134* Authors:
135* ========
136*
137*> \author Univ. of Tennessee
138*> \author Univ. of California Berkeley
139*> \author Univ. of Colorado Denver
140*> \author NAG Ltd.
141*
142*> \ingroup gbcon
143*
144* =====================================================================
145 SUBROUTINE cgbcon( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND,
146 $ WORK, RWORK, INFO )
147*
148* -- LAPACK computational routine --
149* -- LAPACK is a software package provided by Univ. of Tennessee, --
150* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
151*
152* .. Scalar Arguments ..
153 CHARACTER NORM
154 INTEGER INFO, KL, KU, LDAB, N
155 REAL ANORM, RCOND
156* ..
157* .. Array Arguments ..
158 INTEGER IPIV( * )
159 REAL RWORK( * )
160 COMPLEX AB( LDAB, * ), WORK( * )
161* ..
162*
163* =====================================================================
164*
165* .. Parameters ..
166 REAL ONE, ZERO
167 parameter( one = 1.0e+0, zero = 0.0e+0 )
168* ..
169* .. Local Scalars ..
170 LOGICAL LNOTI, ONENRM
171 CHARACTER NORMIN
172 INTEGER IX, J, JP, KASE, KASE1, KD, LM
173 REAL AINVNM, SCALE, SMLNUM
174 COMPLEX T, ZDUM
175* ..
176* .. Local Arrays ..
177 INTEGER ISAVE( 3 )
178* ..
179* .. External Functions ..
180 LOGICAL LSAME
181 INTEGER ICAMAX
182 REAL SLAMCH
183 COMPLEX CDOTC
184 EXTERNAL lsame, icamax, slamch, cdotc
185* ..
186* .. External Subroutines ..
187 EXTERNAL caxpy, clacn2, clatbs, csrscl, xerbla
188* ..
189* .. Intrinsic Functions ..
190 INTRINSIC abs, aimag, min, real
191* ..
192* .. Statement Functions ..
193 REAL CABS1
194* ..
195* .. Statement Function definitions ..
196 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
197* ..
198* .. Executable Statements ..
199*
200* Test the input parameters.
201*
202 info = 0
203 onenrm = norm.EQ.'1' .OR. lsame( norm, 'O' )
204 IF( .NOT.onenrm .AND. .NOT.lsame( norm, 'I' ) ) THEN
205 info = -1
206 ELSE IF( n.LT.0 ) THEN
207 info = -2
208 ELSE IF( kl.LT.0 ) THEN
209 info = -3
210 ELSE IF( ku.LT.0 ) THEN
211 info = -4
212 ELSE IF( ldab.LT.2*kl+ku+1 ) THEN
213 info = -6
214 ELSE IF( anorm.LT.zero ) THEN
215 info = -8
216 END IF
217 IF( info.NE.0 ) THEN
218 CALL xerbla( 'CGBCON', -info )
219 RETURN
220 END IF
221*
222* Quick return if possible
223*
224 rcond = zero
225 IF( n.EQ.0 ) THEN
226 rcond = one
227 RETURN
228 ELSE IF( anorm.EQ.zero ) THEN
229 RETURN
230 END IF
231*
232 smlnum = slamch( 'Safe minimum' )
233*
234* Estimate the norm of inv(A).
235*
236 ainvnm = zero
237 normin = 'N'
238 IF( onenrm ) THEN
239 kase1 = 1
240 ELSE
241 kase1 = 2
242 END IF
243 kd = kl + ku + 1
244 lnoti = kl.GT.0
245 kase = 0
246 10 CONTINUE
247 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
248 IF( kase.NE.0 ) THEN
249 IF( kase.EQ.kase1 ) THEN
250*
251* Multiply by inv(L).
252*
253 IF( lnoti ) THEN
254 DO 20 j = 1, n - 1
255 lm = min( kl, n-j )
256 jp = ipiv( j )
257 t = work( jp )
258 IF( jp.NE.j ) THEN
259 work( jp ) = work( j )
260 work( j ) = t
261 END IF
262 CALL caxpy( lm, -t, ab( kd+1, j ), 1, work( j+1 ), 1 )
263 20 CONTINUE
264 END IF
265*
266* Multiply by inv(U).
267*
268 CALL clatbs( 'Upper', 'No transpose', 'Non-unit', normin, n,
269 $ kl+ku, ab, ldab, work, scale, rwork, info )
270 ELSE
271*
272* Multiply by inv(U**H).
273*
274 CALL clatbs( 'Upper', 'Conjugate transpose', 'Non-unit',
275 $ normin, n, kl+ku, ab, ldab, work, scale, rwork,
276 $ info )
277*
278* Multiply by inv(L**H).
279*
280 IF( lnoti ) THEN
281 DO 30 j = n - 1, 1, -1
282 lm = min( kl, n-j )
283 work( j ) = work( j ) - cdotc( lm, ab( kd+1, j ), 1,
284 $ work( j+1 ), 1 )
285 jp = ipiv( j )
286 IF( jp.NE.j ) THEN
287 t = work( jp )
288 work( jp ) = work( j )
289 work( j ) = t
290 END IF
291 30 CONTINUE
292 END IF
293 END IF
294*
295* Divide X by 1/SCALE if doing so will not cause overflow.
296*
297 normin = 'Y'
298 IF( scale.NE.one ) THEN
299 ix = icamax( n, work, 1 )
300 IF( scale.LT.cabs1( work( ix ) )*smlnum .OR. scale.EQ.zero )
301 $ GO TO 40
302 CALL csrscl( n, scale, work, 1 )
303 END IF
304 GO TO 10
305 END IF
306*
307* Compute the estimate of the reciprocal condition number.
308*
309 IF( ainvnm.NE.zero )
310 $ rcond = ( one / ainvnm ) / anorm
311*
312 40 CONTINUE
313 RETURN
314*
315* End of CGBCON
316*
317 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine caxpy(n, ca, cx, incx, cy, incy)
CAXPY
Definition caxpy.f:88
subroutine cgbcon(norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, rwork, info)
CGBCON
Definition cgbcon.f:147
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition clacn2.f:133
subroutine clatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm, info)
CLATBS solves a triangular banded system of equations.
Definition clatbs.f:243
subroutine csrscl(n, sa, sx, incx)
CSRSCL multiplies a vector by the reciprocal of a real scalar.
Definition csrscl.f:84