LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cgesc2.f
Go to the documentation of this file.
1*> \brief \b CGESC2 solves a system of linear equations using the LU factorization with complete pivoting computed by sgetc2.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CGESC2 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesc2.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesc2.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesc2.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
22*
23* .. Scalar Arguments ..
24* INTEGER LDA, N
25* REAL SCALE
26* ..
27* .. Array Arguments ..
28* INTEGER IPIV( * ), JPIV( * )
29* COMPLEX A( LDA, * ), RHS( * )
30* ..
31*
32*
33*> \par Purpose:
34* =============
35*>
36*> \verbatim
37*>
38*> CGESC2 solves a system of linear equations
39*>
40*> A * X = scale* RHS
41*>
42*> with a general N-by-N matrix A using the LU factorization with
43*> complete pivoting computed by CGETC2.
44*>
45*> \endverbatim
46*
47* Arguments:
48* ==========
49*
50*> \param[in] N
51*> \verbatim
52*> N is INTEGER
53*> The number of columns of the matrix A.
54*> \endverbatim
55*>
56*> \param[in] A
57*> \verbatim
58*> A is COMPLEX array, dimension (LDA, N)
59*> On entry, the LU part of the factorization of the n-by-n
60*> matrix A computed by CGETC2: A = P * L * U * Q
61*> \endverbatim
62*>
63*> \param[in] LDA
64*> \verbatim
65*> LDA is INTEGER
66*> The leading dimension of the array A. LDA >= max(1, N).
67*> \endverbatim
68*>
69*> \param[in,out] RHS
70*> \verbatim
71*> RHS is COMPLEX array, dimension N.
72*> On entry, the right hand side vector b.
73*> On exit, the solution vector X.
74*> \endverbatim
75*>
76*> \param[in] IPIV
77*> \verbatim
78*> IPIV is INTEGER array, dimension (N).
79*> The pivot indices; for 1 <= i <= N, row i of the
80*> matrix has been interchanged with row IPIV(i).
81*> \endverbatim
82*>
83*> \param[in] JPIV
84*> \verbatim
85*> JPIV is INTEGER array, dimension (N).
86*> The pivot indices; for 1 <= j <= N, column j of the
87*> matrix has been interchanged with column JPIV(j).
88*> \endverbatim
89*>
90*> \param[out] SCALE
91*> \verbatim
92*> SCALE is REAL
93*> On exit, SCALE contains the scale factor. SCALE is chosen
94*> 0 <= SCALE <= 1 to prevent overflow in the solution.
95*> \endverbatim
96*
97* Authors:
98* ========
99*
100*> \author Univ. of Tennessee
101*> \author Univ. of California Berkeley
102*> \author Univ. of Colorado Denver
103*> \author NAG Ltd.
104*
105*> \ingroup gesc2
106*
107*> \par Contributors:
108* ==================
109*>
110*> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
111*> Umea University, S-901 87 Umea, Sweden.
112*
113* =====================================================================
114 SUBROUTINE cgesc2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
115*
116* -- LAPACK auxiliary routine --
117* -- LAPACK is a software package provided by Univ. of Tennessee, --
118* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
119*
120* .. Scalar Arguments ..
121 INTEGER LDA, N
122 REAL SCALE
123* ..
124* .. Array Arguments ..
125 INTEGER IPIV( * ), JPIV( * )
126 COMPLEX A( LDA, * ), RHS( * )
127* ..
128*
129* =====================================================================
130*
131* .. Parameters ..
132 REAL ZERO, ONE, TWO
133 parameter( zero = 0.0e+0, one = 1.0e+0, two = 2.0e+0 )
134* ..
135* .. Local Scalars ..
136 INTEGER I, J
137 REAL BIGNUM, EPS, SMLNUM
138 COMPLEX TEMP
139* ..
140* .. External Subroutines ..
141 EXTERNAL claswp, cscal
142* ..
143* .. External Functions ..
144 INTEGER ICAMAX
145 REAL SLAMCH
146 EXTERNAL icamax, slamch
147* ..
148* .. Intrinsic Functions ..
149 INTRINSIC abs, cmplx, real
150* ..
151* .. Executable Statements ..
152*
153* Set constant to control overflow
154*
155 eps = slamch( 'P' )
156 smlnum = slamch( 'S' ) / eps
157 bignum = one / smlnum
158*
159* Apply permutations IPIV to RHS
160*
161 CALL claswp( 1, rhs, lda, 1, n-1, ipiv, 1 )
162*
163* Solve for L part
164*
165 DO 20 i = 1, n - 1
166 DO 10 j = i + 1, n
167 rhs( j ) = rhs( j ) - a( j, i )*rhs( i )
168 10 CONTINUE
169 20 CONTINUE
170*
171* Solve for U part
172*
173 scale = one
174*
175* Check for scaling
176*
177 i = icamax( n, rhs, 1 )
178 IF( two*smlnum*abs( rhs( i ) ).GT.abs( a( n, n ) ) ) THEN
179 temp = cmplx( one / two, zero ) / abs( rhs( i ) )
180 CALL cscal( n, temp, rhs( 1 ), 1 )
181 scale = scale*real( temp )
182 END IF
183 DO 40 i = n, 1, -1
184 temp = cmplx( one, zero ) / a( i, i )
185 rhs( i ) = rhs( i )*temp
186 DO 30 j = i + 1, n
187 rhs( i ) = rhs( i ) - rhs( j )*( a( i, j )*temp )
188 30 CONTINUE
189 40 CONTINUE
190*
191* Apply permutations JPIV to the solution (RHS)
192*
193 CALL claswp( 1, rhs, lda, 1, n-1, jpiv, -1 )
194 RETURN
195*
196* End of CGESC2
197*
198 END
subroutine cgesc2(n, a, lda, rhs, ipiv, jpiv, scale)
CGESC2 solves a system of linear equations using the LU factorization with complete pivoting computed...
Definition cgesc2.f:115
subroutine claswp(n, a, lda, k1, k2, ipiv, incx)
CLASWP performs a series of row interchanges on a general rectangular matrix.
Definition claswp.f:115
subroutine cscal(n, ca, cx, incx)
CSCAL
Definition cscal.f:78