LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cchksy_rk()

subroutine cchksy_rk ( logical, dimension( * )  dotype,
integer  nn,
integer, dimension( * )  nval,
integer  nnb,
integer, dimension( * )  nbval,
integer  nns,
integer, dimension( * )  nsval,
real  thresh,
logical  tsterr,
integer  nmax,
complex, dimension( * )  a,
complex, dimension( * )  afac,
complex, dimension( * )  e,
complex, dimension( * )  ainv,
complex, dimension( * )  b,
complex, dimension( * )  x,
complex, dimension( * )  xact,
complex, dimension( * )  work,
real, dimension( * )  rwork,
integer, dimension( * )  iwork,
integer  nout 
)

CCHKSY_RK

Purpose:
 CCHKSY_RK tests CSYTRF_RK, -TRI_3, -TRS_3,
 and -CON_3.
Parameters
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB contained in the vector NBVAL.
[in]NBVAL
          NBVAL is INTEGER array, dimension (NNB)
          The values of the blocksize NB.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is REAL
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX array, dimension (NMAX*NMAX)
[out]E
          E is COMPLEX array, dimension (NMAX)
[out]AINV
          AINV is COMPLEX array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is COMPLEX array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is COMPLEX array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is REAL array, dimension (max(NMAX,2*NSMAX))
[out]IWORK
          IWORK is INTEGER array, dimension (2*NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 174 of file cchksy_rk.f.

177*
178* -- LAPACK test routine --
179* -- LAPACK is a software package provided by Univ. of Tennessee, --
180* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
181*
182* .. Scalar Arguments ..
183 LOGICAL TSTERR
184 INTEGER NMAX, NN, NNB, NNS, NOUT
185 REAL THRESH
186* ..
187* .. Array Arguments ..
188 LOGICAL DOTYPE( * )
189 INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
190 REAL RWORK( * )
191 COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ), E( * ),
192 $ WORK( * ), X( * ), XACT( * )
193* ..
194*
195* =====================================================================
196*
197* .. Parameters ..
198 REAL ZERO, ONE
199 parameter( zero = 0.0e+0, one = 1.0e+0 )
200 REAL ONEHALF
201 parameter( onehalf = 0.5e+0 )
202 REAL EIGHT, SEVTEN
203 parameter( eight = 8.0e+0, sevten = 17.0e+0 )
204 COMPLEX CZERO
205 parameter( czero = ( 0.0e+0, 0.0e+0 ) )
206 INTEGER NTYPES
207 parameter( ntypes = 11 )
208 INTEGER NTESTS
209 parameter( ntests = 7 )
210* ..
211* .. Local Scalars ..
212 LOGICAL TRFCON, ZEROT
213 CHARACTER DIST, TYPE, UPLO, XTYPE
214 CHARACTER*3 PATH, MATPATH
215 INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
216 $ ITEMP, ITEMP2, IUPLO, IZERO, J, K, KL, KU, LDA,
217 $ LWORK, MODE, N, NB, NERRS, NFAIL, NIMAT, NRHS,
218 $ NRUN, NT
219 REAL ALPHA, ANORM, CNDNUM, CONST, SING_MAX,
220 $ SING_MIN, RCOND, RCONDC, STEMP
221* ..
222* .. Local Arrays ..
223 CHARACTER UPLOS( 2 )
224 INTEGER ISEED( 4 ), ISEEDY( 4 )
225 REAL RESULT( NTESTS )
226 COMPLEX BLOCK( 2, 2 ), CDUMMY( 1 )
227* ..
228* .. External Functions ..
229 REAL CLANGE, CLANSY, SGET06
230 EXTERNAL clange, clansy, sget06
231* ..
232* .. External Subroutines ..
233 EXTERNAL alaerh, alahd, alasum, cerrsy, cgesvd, cget04,
237* ..
238* .. Intrinsic Functions ..
239 INTRINSIC max, min, sqrt
240* ..
241* .. Scalars in Common ..
242 LOGICAL LERR, OK
243 CHARACTER*32 SRNAMT
244 INTEGER INFOT, NUNIT
245* ..
246* .. Common blocks ..
247 COMMON / infoc / infot, nunit, ok, lerr
248 COMMON / srnamc / srnamt
249* ..
250* .. Data statements ..
251 DATA iseedy / 1988, 1989, 1990, 1991 /
252 DATA uplos / 'U', 'L' /
253* ..
254* .. Executable Statements ..
255*
256* Initialize constants and the random number seed.
257*
258 alpha = ( one+sqrt( sevten ) ) / eight
259*
260* Test path
261*
262 path( 1: 1 ) = 'Complex precision'
263 path( 2: 3 ) = 'SK'
264*
265* Path to generate matrices
266*
267 matpath( 1: 1 ) = 'Complex precision'
268 matpath( 2: 3 ) = 'SY'
269*
270 nrun = 0
271 nfail = 0
272 nerrs = 0
273 DO 10 i = 1, 4
274 iseed( i ) = iseedy( i )
275 10 CONTINUE
276*
277* Test the error exits
278*
279 IF( tsterr )
280 $ CALL cerrsy( path, nout )
281 infot = 0
282*
283* Set the minimum block size for which the block routine should
284* be used, which will be later returned by ILAENV
285*
286 CALL xlaenv( 2, 2 )
287*
288* Do for each value of N in NVAL
289*
290 DO 270 in = 1, nn
291 n = nval( in )
292 lda = max( n, 1 )
293 xtype = 'N'
294 nimat = ntypes
295 IF( n.LE.0 )
296 $ nimat = 1
297*
298 izero = 0
299*
300* Do for each value of matrix type IMAT
301*
302 DO 260 imat = 1, nimat
303*
304* Do the tests only if DOTYPE( IMAT ) is true.
305*
306 IF( .NOT.dotype( imat ) )
307 $ GO TO 260
308*
309* Skip types 3, 4, 5, or 6 if the matrix size is too small.
310*
311 zerot = imat.GE.3 .AND. imat.LE.6
312 IF( zerot .AND. n.LT.imat-2 )
313 $ GO TO 260
314*
315* Do first for UPLO = 'U', then for UPLO = 'L'
316*
317 DO 250 iuplo = 1, 2
318 uplo = uplos( iuplo )
319*
320* Begin generate test matrix A.
321*
322 IF( imat.NE.ntypes ) THEN
323*
324* Set up parameters with CLATB4 for the matrix generator
325* based on the type of matrix to be generated.
326*
327 CALL clatb4( matpath, imat, n, n, TYPE, KL, KU, ANORM,
328 $ MODE, CNDNUM, DIST )
329*
330* Generate a matrix with CLATMS.
331*
332 srnamt = 'CLATMS'
333 CALL clatms( n, n, dist, iseed, TYPE, RWORK, MODE,
334 $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA,
335 $ WORK, INFO )
336*
337* Check error code from CLATMS and handle error.
338*
339 IF( info.NE.0 ) THEN
340 CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
341 $ -1, -1, -1, imat, nfail, nerrs, nout )
342*
343* Skip all tests for this generated matrix
344*
345 GO TO 250
346 END IF
347*
348* For matrix types 3-6, zero one or more rows and
349* columns of the matrix to test that INFO is returned
350* correctly.
351*
352 IF( zerot ) THEN
353 IF( imat.EQ.3 ) THEN
354 izero = 1
355 ELSE IF( imat.EQ.4 ) THEN
356 izero = n
357 ELSE
358 izero = n / 2 + 1
359 END IF
360*
361 IF( imat.LT.6 ) THEN
362*
363* Set row and column IZERO to zero.
364*
365 IF( iuplo.EQ.1 ) THEN
366 ioff = ( izero-1 )*lda
367 DO 20 i = 1, izero - 1
368 a( ioff+i ) = czero
369 20 CONTINUE
370 ioff = ioff + izero
371 DO 30 i = izero, n
372 a( ioff ) = czero
373 ioff = ioff + lda
374 30 CONTINUE
375 ELSE
376 ioff = izero
377 DO 40 i = 1, izero - 1
378 a( ioff ) = czero
379 ioff = ioff + lda
380 40 CONTINUE
381 ioff = ioff - izero
382 DO 50 i = izero, n
383 a( ioff+i ) = czero
384 50 CONTINUE
385 END IF
386 ELSE
387 IF( iuplo.EQ.1 ) THEN
388*
389* Set the first IZERO rows and columns to zero.
390*
391 ioff = 0
392 DO 70 j = 1, n
393 i2 = min( j, izero )
394 DO 60 i = 1, i2
395 a( ioff+i ) = czero
396 60 CONTINUE
397 ioff = ioff + lda
398 70 CONTINUE
399 ELSE
400*
401* Set the last IZERO rows and columns to zero.
402*
403 ioff = 0
404 DO 90 j = 1, n
405 i1 = max( j, izero )
406 DO 80 i = i1, n
407 a( ioff+i ) = czero
408 80 CONTINUE
409 ioff = ioff + lda
410 90 CONTINUE
411 END IF
412 END IF
413 ELSE
414 izero = 0
415 END IF
416*
417 ELSE
418*
419* For matrix kind IMAT = 11, generate special block
420* diagonal matrix to test alternate code
421* for the 2 x 2 blocks.
422*
423 CALL clatsy( uplo, n, a, lda, iseed )
424*
425 END IF
426*
427* End generate test matrix A.
428*
429*
430* Do for each value of NB in NBVAL
431*
432 DO 240 inb = 1, nnb
433*
434* Set the optimal blocksize, which will be later
435* returned by ILAENV.
436*
437 nb = nbval( inb )
438 CALL xlaenv( 1, nb )
439*
440* Copy the test matrix A into matrix AFAC which
441* will be factorized in place. This is needed to
442* preserve the test matrix A for subsequent tests.
443*
444 CALL clacpy( uplo, n, n, a, lda, afac, lda )
445*
446* Compute the L*D*L**T or U*D*U**T factorization of the
447* matrix. IWORK stores details of the interchanges and
448* the block structure of D. AINV is a work array for
449* block factorization, LWORK is the length of AINV.
450*
451 lwork = max( 2, nb )*lda
452 srnamt = 'CSYTRF_RK'
453 CALL csytrf_rk( uplo, n, afac, lda, e, iwork, ainv,
454 $ lwork, info )
455*
456* Adjust the expected value of INFO to account for
457* pivoting.
458*
459 k = izero
460 IF( k.GT.0 ) THEN
461 100 CONTINUE
462 IF( iwork( k ).LT.0 ) THEN
463 IF( iwork( k ).NE.-k ) THEN
464 k = -iwork( k )
465 GO TO 100
466 END IF
467 ELSE IF( iwork( k ).NE.k ) THEN
468 k = iwork( k )
469 GO TO 100
470 END IF
471 END IF
472*
473* Check error code from CSYTRF_RK and handle error.
474*
475 IF( info.NE.k)
476 $ CALL alaerh( path, 'CSYTRF_RK', info, k,
477 $ uplo, n, n, -1, -1, nb, imat,
478 $ nfail, nerrs, nout )
479*
480* Set the condition estimate flag if the INFO is not 0.
481*
482 IF( info.NE.0 ) THEN
483 trfcon = .true.
484 ELSE
485 trfcon = .false.
486 END IF
487*
488*+ TEST 1
489* Reconstruct matrix from factors and compute residual.
490*
491 CALL csyt01_3( uplo, n, a, lda, afac, lda, e, iwork,
492 $ ainv, lda, rwork, result( 1 ) )
493 nt = 1
494*
495*+ TEST 2
496* Form the inverse and compute the residual,
497* if the factorization was competed without INFO > 0
498* (i.e. there is no zero rows and columns).
499* Do it only for the first block size.
500*
501 IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
502 CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
503 srnamt = 'CSYTRI_3'
504*
505* Another reason that we need to compute the inverse
506* is that CSYT03 produces RCONDC which is used later
507* in TEST6 and TEST7.
508*
509 lwork = (n+nb+1)*(nb+3)
510 CALL csytri_3( uplo, n, ainv, lda, e, iwork, work,
511 $ lwork, info )
512*
513* Check error code from CSYTRI_3 and handle error.
514*
515 IF( info.NE.0 )
516 $ CALL alaerh( path, 'CSYTRI_3', info, -1,
517 $ uplo, n, n, -1, -1, -1, imat,
518 $ nfail, nerrs, nout )
519*
520* Compute the residual for a symmetric matrix times
521* its inverse.
522*
523 CALL csyt03( uplo, n, a, lda, ainv, lda, work, lda,
524 $ rwork, rcondc, result( 2 ) )
525 nt = 2
526 END IF
527*
528* Print information about the tests that did not pass
529* the threshold.
530*
531 DO 110 k = 1, nt
532 IF( result( k ).GE.thresh ) THEN
533 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
534 $ CALL alahd( nout, path )
535 WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
536 $ result( k )
537 nfail = nfail + 1
538 END IF
539 110 CONTINUE
540 nrun = nrun + nt
541*
542*+ TEST 3
543* Compute largest element in U or L
544*
545 result( 3 ) = zero
546 stemp = zero
547*
548 const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) ) /
549 $ ( one-alpha )
550*
551 IF( iuplo.EQ.1 ) THEN
552*
553* Compute largest element in U
554*
555 k = n
556 120 CONTINUE
557 IF( k.LE.1 )
558 $ GO TO 130
559*
560 IF( iwork( k ).GT.zero ) THEN
561*
562* Get max absolute value from elements
563* in column k in in U
564*
565 stemp = clange( 'M', k-1, 1,
566 $ afac( ( k-1 )*lda+1 ), lda, rwork )
567 ELSE
568*
569* Get max absolute value from elements
570* in columns k and k-1 in U
571*
572 stemp = clange( 'M', k-2, 2,
573 $ afac( ( k-2 )*lda+1 ), lda, rwork )
574 k = k - 1
575*
576 END IF
577*
578* STEMP should be bounded by CONST
579*
580 stemp = stemp - const + thresh
581 IF( stemp.GT.result( 3 ) )
582 $ result( 3 ) = stemp
583*
584 k = k - 1
585*
586 GO TO 120
587 130 CONTINUE
588*
589 ELSE
590*
591* Compute largest element in L
592*
593 k = 1
594 140 CONTINUE
595 IF( k.GE.n )
596 $ GO TO 150
597*
598 IF( iwork( k ).GT.zero ) THEN
599*
600* Get max absolute value from elements
601* in column k in in L
602*
603 stemp = clange( 'M', n-k, 1,
604 $ afac( ( k-1 )*lda+k+1 ), lda, rwork )
605 ELSE
606*
607* Get max absolute value from elements
608* in columns k and k+1 in L
609*
610 stemp = clange( 'M', n-k-1, 2,
611 $ afac( ( k-1 )*lda+k+2 ), lda, rwork )
612 k = k + 1
613*
614 END IF
615*
616* STEMP should be bounded by CONST
617*
618 stemp = stemp - const + thresh
619 IF( stemp.GT.result( 3 ) )
620 $ result( 3 ) = stemp
621*
622 k = k + 1
623*
624 GO TO 140
625 150 CONTINUE
626 END IF
627*
628*
629*+ TEST 4
630* Compute largest 2-Norm (condition number)
631* of 2-by-2 diag blocks
632*
633 result( 4 ) = zero
634 stemp = zero
635*
636 const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) )*
637 $ ( ( one + alpha ) / ( one - alpha ) )
638*
639 IF( iuplo.EQ.1 ) THEN
640*
641* Loop backward for UPLO = 'U'
642*
643 k = n
644 160 CONTINUE
645 IF( k.LE.1 )
646 $ GO TO 170
647*
648 IF( iwork( k ).LT.zero ) THEN
649*
650* Get the two singular values
651* (real and non-negative) of a 2-by-2 block,
652* store them in RWORK array
653*
654 block( 1, 1 ) = afac( ( k-2 )*lda+k-1 )
655 block( 1, 2 ) = e( k )
656 block( 2, 1 ) = block( 1, 2 )
657 block( 2, 2 ) = afac( (k-1)*lda+k )
658*
659 CALL cgesvd( 'N', 'N', 2, 2, block, 2, rwork,
660 $ cdummy, 1, cdummy, 1,
661 $ work, 6, rwork( 3 ), info )
662*
663*
664 sing_max = rwork( 1 )
665 sing_min = rwork( 2 )
666*
667 stemp = sing_max / sing_min
668*
669* STEMP should be bounded by CONST
670*
671 stemp = stemp - const + thresh
672 IF( stemp.GT.result( 4 ) )
673 $ result( 4 ) = stemp
674 k = k - 1
675*
676 END IF
677*
678 k = k - 1
679*
680 GO TO 160
681 170 CONTINUE
682*
683 ELSE
684*
685* Loop forward for UPLO = 'L'
686*
687 k = 1
688 180 CONTINUE
689 IF( k.GE.n )
690 $ GO TO 190
691*
692 IF( iwork( k ).LT.zero ) THEN
693*
694* Get the two singular values
695* (real and non-negative) of a 2-by-2 block,
696* store them in RWORK array
697*
698 block( 1, 1 ) = afac( ( k-1 )*lda+k )
699 block( 2, 1 ) = e( k )
700 block( 1, 2 ) = block( 2, 1 )
701 block( 2, 2 ) = afac( k*lda+k+1 )
702*
703 CALL cgesvd( 'N', 'N', 2, 2, block, 2, rwork,
704 $ cdummy, 1, cdummy, 1,
705 $ work, 6, rwork(3), info )
706*
707 sing_max = rwork( 1 )
708 sing_min = rwork( 2 )
709*
710 stemp = sing_max / sing_min
711*
712* STEMP should be bounded by CONST
713*
714 stemp = stemp - const + thresh
715 IF( stemp.GT.result( 4 ) )
716 $ result( 4 ) = stemp
717 k = k + 1
718*
719 END IF
720*
721 k = k + 1
722*
723 GO TO 180
724 190 CONTINUE
725 END IF
726*
727* Print information about the tests that did not pass
728* the threshold.
729*
730 DO 200 k = 3, 4
731 IF( result( k ).GE.thresh ) THEN
732 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
733 $ CALL alahd( nout, path )
734 WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
735 $ result( k )
736 nfail = nfail + 1
737 END IF
738 200 CONTINUE
739 nrun = nrun + 2
740*
741* Skip the other tests if this is not the first block
742* size.
743*
744 IF( inb.GT.1 )
745 $ GO TO 240
746*
747* Do only the condition estimate if INFO is not 0.
748*
749 IF( trfcon ) THEN
750 rcondc = zero
751 GO TO 230
752 END IF
753*
754* Do for each value of NRHS in NSVAL.
755*
756 DO 220 irhs = 1, nns
757 nrhs = nsval( irhs )
758*
759*+ TEST 5 ( Using TRS_3)
760* Solve and compute residual for A * X = B.
761*
762* Choose a set of NRHS random solution vectors
763* stored in XACT and set up the right hand side B
764*
765 srnamt = 'CLARHS'
766 CALL clarhs( matpath, xtype, uplo, ' ', n, n,
767 $ kl, ku, nrhs, a, lda, xact, lda,
768 $ b, lda, iseed, info )
769 CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
770*
771 srnamt = 'CSYTRS_3'
772 CALL csytrs_3( uplo, n, nrhs, afac, lda, e, iwork,
773 $ x, lda, info )
774*
775* Check error code from CSYTRS_3 and handle error.
776*
777 IF( info.NE.0 )
778 $ CALL alaerh( path, 'CSYTRS_3', info, 0,
779 $ uplo, n, n, -1, -1, nrhs, imat,
780 $ nfail, nerrs, nout )
781*
782 CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
783*
784* Compute the residual for the solution
785*
786 CALL csyt02( uplo, n, nrhs, a, lda, x, lda, work,
787 $ lda, rwork, result( 5 ) )
788*
789*+ TEST 6
790* Check solution from generated exact solution.
791*
792 CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
793 $ result( 6 ) )
794*
795* Print information about the tests that did not pass
796* the threshold.
797*
798 DO 210 k = 5, 6
799 IF( result( k ).GE.thresh ) THEN
800 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
801 $ CALL alahd( nout, path )
802 WRITE( nout, fmt = 9998 )uplo, n, nrhs,
803 $ imat, k, result( k )
804 nfail = nfail + 1
805 END IF
806 210 CONTINUE
807 nrun = nrun + 2
808*
809* End do for each value of NRHS in NSVAL.
810*
811 220 CONTINUE
812*
813*+ TEST 7
814* Get an estimate of RCOND = 1/CNDNUM.
815*
816 230 CONTINUE
817 anorm = clansy( '1', uplo, n, a, lda, rwork )
818 srnamt = 'CSYCON_3'
819 CALL csycon_3( uplo, n, afac, lda, e, iwork, anorm,
820 $ rcond, work, info )
821*
822* Check error code from CSYCON_3 and handle error.
823*
824 IF( info.NE.0 )
825 $ CALL alaerh( path, 'CSYCON_3', info, 0,
826 $ uplo, n, n, -1, -1, -1, imat,
827 $ nfail, nerrs, nout )
828*
829* Compute the test ratio to compare values of RCOND
830*
831 result( 7 ) = sget06( rcond, rcondc )
832*
833* Print information about the tests that did not pass
834* the threshold.
835*
836 IF( result( 7 ).GE.thresh ) THEN
837 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
838 $ CALL alahd( nout, path )
839 WRITE( nout, fmt = 9997 )uplo, n, imat, 7,
840 $ result( 7 )
841 nfail = nfail + 1
842 END IF
843 nrun = nrun + 1
844 240 CONTINUE
845*
846 250 CONTINUE
847 260 CONTINUE
848 270 CONTINUE
849*
850* Print a summary of the results.
851*
852 CALL alasum( path, nout, nfail, nrun, nerrs )
853*
854 9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
855 $ i2, ', test ', i2, ', ratio =', g12.5 )
856 9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
857 $ i2, ', test(', i2, ') =', g12.5 )
858 9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
859 $ ', test(', i2, ') =', g12.5 )
860 RETURN
861*
862* End of CCHKSY_RK
863*
subroutine alasum(type, nout, nfail, nrun, nerrs)
ALASUM
Definition alasum.f:73
subroutine clarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
CLARHS
Definition clarhs.f:208
subroutine xlaenv(ispec, nvalue)
XLAENV
Definition xlaenv.f:81
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine alahd(iounit, path)
ALAHD
Definition alahd.f:107
subroutine cerrsy(path, nunit)
CERRSY
Definition cerrsy.f:55
subroutine cget04(n, nrhs, x, ldx, xact, ldxact, rcond, resid)
CGET04
Definition cget04.f:102
subroutine clatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
CLATB4
Definition clatb4.f:121
subroutine clatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
CLATMS
Definition clatms.f:332
subroutine clatsy(uplo, n, x, ldx, iseed)
CLATSY
Definition clatsy.f:89
subroutine csyt01_3(uplo, n, a, lda, afac, ldafac, e, ipiv, c, ldc, rwork, resid)
CSYT01_3
Definition csyt01_3.f:141
subroutine csyt02(uplo, n, nrhs, a, lda, x, ldx, b, ldb, rwork, resid)
CSYT02
Definition csyt02.f:127
subroutine csyt03(uplo, n, a, lda, ainv, ldainv, work, ldwork, rwork, rcond, resid)
CSYT03
Definition csyt03.f:126
subroutine cgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, info)
CGESVD computes the singular value decomposition (SVD) for GE matrices
Definition cgesvd.f:214
subroutine csycon_3(uplo, n, a, lda, e, ipiv, anorm, rcond, work, info)
CSYCON_3
Definition csycon_3.f:166
subroutine csytrf_rk(uplo, n, a, lda, e, ipiv, work, lwork, info)
CSYTRF_RK computes the factorization of a complex symmetric indefinite matrix using the bounded Bunch...
Definition csytrf_rk.f:259
subroutine csytri_3(uplo, n, a, lda, e, ipiv, work, lwork, info)
CSYTRI_3
Definition csytri_3.f:170
subroutine csytrs_3(uplo, n, nrhs, a, lda, e, ipiv, b, ldb, info)
CSYTRS_3
Definition csytrs_3.f:165
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
real function clange(norm, m, n, a, lda, work)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition clange.f:115
real function clansy(norm, uplo, n, a, lda, work)
CLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition clansy.f:123
real function sget06(rcond, rcondc)
SGET06
Definition sget06.f:55
Here is the call graph for this function:
Here is the caller graph for this function: