LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dgelsy()

subroutine dgelsy ( integer  m,
integer  n,
integer  nrhs,
double precision, dimension( lda, * )  a,
integer  lda,
double precision, dimension( ldb, * )  b,
integer  ldb,
integer, dimension( * )  jpvt,
double precision  rcond,
integer  rank,
double precision, dimension( * )  work,
integer  lwork,
integer  info 
)

DGELSY solves overdetermined or underdetermined systems for GE matrices

Download DGELSY + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DGELSY computes the minimum-norm solution to a real linear least
 squares problem:
     minimize || A * X - B ||
 using a complete orthogonal factorization of A.  A is an M-by-N
 matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can be
 handled in a single call; they are stored as the columns of the
 M-by-NRHS right hand side matrix B and the N-by-NRHS solution
 matrix X.

 The routine first computes a QR factorization with column pivoting:
     A * P = Q * [ R11 R12 ]
                 [  0  R22 ]
 with R11 defined as the largest leading submatrix whose estimated
 condition number is less than 1/RCOND.  The order of R11, RANK,
 is the effective rank of A.

 Then, R22 is considered to be negligible, and R12 is annihilated
 by orthogonal transformations from the right, arriving at the
 complete orthogonal factorization:
    A * P = Q * [ T11 0 ] * Z
                [  0  0 ]
 The minimum-norm solution is then
    X = P * Z**T [ inv(T11)*Q1**T*B ]
                 [        0         ]
 where Q1 consists of the first RANK columns of Q.

 This routine is basically identical to the original xGELSX except
 three differences:
   o The call to the subroutine xGEQPF has been substituted by the
     the call to the subroutine xGEQP3. This subroutine is a Blas-3
     version of the QR factorization with column pivoting.
   o Matrix B (the right hand side) is updated with Blas-3.
   o The permutation of matrix B (the right hand side) is faster and
     more simple.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of
          columns of matrices B and X. NRHS >= 0.
[in,out]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, A has been overwritten by details of its
          complete orthogonal factorization.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[in,out]B
          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
          On entry, the M-by-NRHS right hand side matrix B.
          On exit, the N-by-NRHS solution matrix X.
          If M = 0 or N = 0, B is not referenced.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,M,N).
[in,out]JPVT
          JPVT is INTEGER array, dimension (N)
          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
          to the front of AP, otherwise column i is a free column.
          On exit, if JPVT(i) = k, then the i-th column of AP
          was the k-th column of A.
[in]RCOND
          RCOND is DOUBLE PRECISION
          RCOND is used to determine the effective rank of A, which
          is defined as the order of the largest leading triangular
          submatrix R11 in the QR factorization with pivoting of A,
          whose estimated condition number < 1/RCOND.
[out]RANK
          RANK is INTEGER
          The effective rank of A, i.e., the order of the submatrix
          R11.  This is the same as the order of the submatrix T11
          in the complete orthogonal factorization of A.
          If NRHS = 0, RANK = 0 on output.
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          The unblocked strategy requires that:
             LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ),
          where MN = min( M, N ).
          The block algorithm requires that:
             LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ),
          where NB is an upper bound on the blocksize returned
          by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR,
          and DORMRZ.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: If INFO = -i, the i-th argument had an illegal value.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain

Definition at line 204 of file dgelsy.f.

206*
207* -- LAPACK driver routine --
208* -- LAPACK is a software package provided by Univ. of Tennessee, --
209* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
210*
211* .. Scalar Arguments ..
212 INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
213 DOUBLE PRECISION RCOND
214* ..
215* .. Array Arguments ..
216 INTEGER JPVT( * )
217 DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
218* ..
219*
220* =====================================================================
221*
222* .. Parameters ..
223 INTEGER IMAX, IMIN
224 parameter( imax = 1, imin = 2 )
225 DOUBLE PRECISION ZERO, ONE
226 parameter( zero = 0.0d+0, one = 1.0d+0 )
227* ..
228* .. Local Scalars ..
229 LOGICAL LQUERY
230 INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKMIN,
231 $ LWKOPT, MN, NB, NB1, NB2, NB3, NB4
232 DOUBLE PRECISION ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
233 $ SMAXPR, SMIN, SMINPR, SMLNUM, WSIZE
234* ..
235* .. External Functions ..
236 INTEGER ILAENV
237 DOUBLE PRECISION DLAMCH, DLANGE
238 EXTERNAL ilaenv, dlamch, dlange
239* ..
240* .. External Subroutines ..
241 EXTERNAL dcopy, dgeqp3, dlaic1, dlascl, dlaset,
243* ..
244* .. Intrinsic Functions ..
245 INTRINSIC abs, max, min
246* ..
247* .. Executable Statements ..
248*
249 mn = min( m, n )
250 ismin = mn + 1
251 ismax = 2*mn + 1
252*
253* Test the input arguments.
254*
255 info = 0
256 lquery = ( lwork.EQ.-1 )
257 IF( m.LT.0 ) THEN
258 info = -1
259 ELSE IF( n.LT.0 ) THEN
260 info = -2
261 ELSE IF( nrhs.LT.0 ) THEN
262 info = -3
263 ELSE IF( lda.LT.max( 1, m ) ) THEN
264 info = -5
265 ELSE IF( ldb.LT.max( 1, m, n ) ) THEN
266 info = -7
267 END IF
268*
269* Figure out optimal block size
270*
271 IF( info.EQ.0 ) THEN
272 IF( mn.EQ.0 .OR. nrhs.EQ.0 ) THEN
273 lwkmin = 1
274 lwkopt = 1
275 ELSE
276 nb1 = ilaenv( 1, 'DGEQRF', ' ', m, n, -1, -1 )
277 nb2 = ilaenv( 1, 'DGERQF', ' ', m, n, -1, -1 )
278 nb3 = ilaenv( 1, 'DORMQR', ' ', m, n, nrhs, -1 )
279 nb4 = ilaenv( 1, 'DORMRQ', ' ', m, n, nrhs, -1 )
280 nb = max( nb1, nb2, nb3, nb4 )
281 lwkmin = mn + max( 2*mn, n + 1, mn + nrhs )
282 lwkopt = max( lwkmin,
283 $ mn + 2*n + nb*( n + 1 ), 2*mn + nb*nrhs )
284 END IF
285 work( 1 ) = lwkopt
286*
287 IF( lwork.LT.lwkmin .AND. .NOT.lquery ) THEN
288 info = -12
289 END IF
290 END IF
291*
292 IF( info.NE.0 ) THEN
293 CALL xerbla( 'DGELSY', -info )
294 RETURN
295 ELSE IF( lquery ) THEN
296 RETURN
297 END IF
298*
299* Quick return if possible
300*
301 IF( mn.EQ.0 .OR. nrhs.EQ.0 ) THEN
302 rank = 0
303 RETURN
304 END IF
305*
306* Get machine parameters
307*
308 smlnum = dlamch( 'S' ) / dlamch( 'P' )
309 bignum = one / smlnum
310*
311* Scale A, B if max entries outside range [SMLNUM,BIGNUM]
312*
313 anrm = dlange( 'M', m, n, a, lda, work )
314 iascl = 0
315 IF( anrm.GT.zero .AND. anrm.LT.smlnum ) THEN
316*
317* Scale matrix norm up to SMLNUM
318*
319 CALL dlascl( 'G', 0, 0, anrm, smlnum, m, n, a, lda, info )
320 iascl = 1
321 ELSE IF( anrm.GT.bignum ) THEN
322*
323* Scale matrix norm down to BIGNUM
324*
325 CALL dlascl( 'G', 0, 0, anrm, bignum, m, n, a, lda, info )
326 iascl = 2
327 ELSE IF( anrm.EQ.zero ) THEN
328*
329* Matrix all zero. Return zero solution.
330*
331 CALL dlaset( 'F', max( m, n ), nrhs, zero, zero, b, ldb )
332 rank = 0
333 GO TO 70
334 END IF
335*
336 bnrm = dlange( 'M', m, nrhs, b, ldb, work )
337 ibscl = 0
338 IF( bnrm.GT.zero .AND. bnrm.LT.smlnum ) THEN
339*
340* Scale matrix norm up to SMLNUM
341*
342 CALL dlascl( 'G', 0, 0, bnrm, smlnum, m, nrhs, b, ldb, info )
343 ibscl = 1
344 ELSE IF( bnrm.GT.bignum ) THEN
345*
346* Scale matrix norm down to BIGNUM
347*
348 CALL dlascl( 'G', 0, 0, bnrm, bignum, m, nrhs, b, ldb, info )
349 ibscl = 2
350 END IF
351*
352* Compute QR factorization with column pivoting of A:
353* A * P = Q * R
354*
355 CALL dgeqp3( m, n, a, lda, jpvt, work( 1 ), work( mn+1 ),
356 $ lwork-mn, info )
357 wsize = mn + work( mn+1 )
358*
359* workspace: MN+2*N+NB*(N+1).
360* Details of Householder rotations stored in WORK(1:MN).
361*
362* Determine RANK using incremental condition estimation
363*
364 work( ismin ) = one
365 work( ismax ) = one
366 smax = abs( a( 1, 1 ) )
367 smin = smax
368 IF( abs( a( 1, 1 ) ).EQ.zero ) THEN
369 rank = 0
370 CALL dlaset( 'F', max( m, n ), nrhs, zero, zero, b, ldb )
371 GO TO 70
372 ELSE
373 rank = 1
374 END IF
375*
376 10 CONTINUE
377 IF( rank.LT.mn ) THEN
378 i = rank + 1
379 CALL dlaic1( imin, rank, work( ismin ), smin, a( 1, i ),
380 $ a( i, i ), sminpr, s1, c1 )
381 CALL dlaic1( imax, rank, work( ismax ), smax, a( 1, i ),
382 $ a( i, i ), smaxpr, s2, c2 )
383*
384 IF( smaxpr*rcond.LE.sminpr ) THEN
385 DO 20 i = 1, rank
386 work( ismin+i-1 ) = s1*work( ismin+i-1 )
387 work( ismax+i-1 ) = s2*work( ismax+i-1 )
388 20 CONTINUE
389 work( ismin+rank ) = c1
390 work( ismax+rank ) = c2
391 smin = sminpr
392 smax = smaxpr
393 rank = rank + 1
394 GO TO 10
395 END IF
396 END IF
397*
398* workspace: 3*MN.
399*
400* Logically partition R = [ R11 R12 ]
401* [ 0 R22 ]
402* where R11 = R(1:RANK,1:RANK)
403*
404* [R11,R12] = [ T11, 0 ] * Y
405*
406 IF( rank.LT.n )
407 $ CALL dtzrzf( rank, n, a, lda, work( mn+1 ), work( 2*mn+1 ),
408 $ lwork-2*mn, info )
409*
410* workspace: 2*MN.
411* Details of Householder rotations stored in WORK(MN+1:2*MN)
412*
413* B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
414*
415 CALL dormqr( 'Left', 'Transpose', m, nrhs, mn, a, lda, work( 1 ),
416 $ b, ldb, work( 2*mn+1 ), lwork-2*mn, info )
417 wsize = max( wsize, 2*mn+work( 2*mn+1 ) )
418*
419* workspace: 2*MN+NB*NRHS.
420*
421* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
422*
423 CALL dtrsm( 'Left', 'Upper', 'No transpose', 'Non-unit', rank,
424 $ nrhs, one, a, lda, b, ldb )
425*
426 DO 40 j = 1, nrhs
427 DO 30 i = rank + 1, n
428 b( i, j ) = zero
429 30 CONTINUE
430 40 CONTINUE
431*
432* B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS)
433*
434 IF( rank.LT.n ) THEN
435 CALL dormrz( 'Left', 'Transpose', n, nrhs, rank, n-rank, a,
436 $ lda, work( mn+1 ), b, ldb, work( 2*mn+1 ),
437 $ lwork-2*mn, info )
438 END IF
439*
440* workspace: 2*MN+NRHS.
441*
442* B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
443*
444 DO 60 j = 1, nrhs
445 DO 50 i = 1, n
446 work( jpvt( i ) ) = b( i, j )
447 50 CONTINUE
448 CALL dcopy( n, work( 1 ), 1, b( 1, j ), 1 )
449 60 CONTINUE
450*
451* workspace: N.
452*
453* Undo scaling
454*
455 IF( iascl.EQ.1 ) THEN
456 CALL dlascl( 'G', 0, 0, anrm, smlnum, n, nrhs, b, ldb, info )
457 CALL dlascl( 'U', 0, 0, smlnum, anrm, rank, rank, a, lda,
458 $ info )
459 ELSE IF( iascl.EQ.2 ) THEN
460 CALL dlascl( 'G', 0, 0, anrm, bignum, n, nrhs, b, ldb, info )
461 CALL dlascl( 'U', 0, 0, bignum, anrm, rank, rank, a, lda,
462 $ info )
463 END IF
464 IF( ibscl.EQ.1 ) THEN
465 CALL dlascl( 'G', 0, 0, smlnum, bnrm, n, nrhs, b, ldb, info )
466 ELSE IF( ibscl.EQ.2 ) THEN
467 CALL dlascl( 'G', 0, 0, bignum, bnrm, n, nrhs, b, ldb, info )
468 END IF
469*
470 70 CONTINUE
471 work( 1 ) = lwkopt
472*
473 RETURN
474*
475* End of DGELSY
476*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dcopy(n, dx, incx, dy, incy)
DCOPY
Definition dcopy.f:82
subroutine dgeqp3(m, n, a, lda, jpvt, tau, work, lwork, info)
DGEQP3
Definition dgeqp3.f:151
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:162
subroutine dlaic1(job, j, x, sest, w, gamma, sestpr, s, c)
DLAIC1 applies one step of incremental condition estimation.
Definition dlaic1.f:134
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function dlange(norm, m, n, a, lda, work)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition dlange.f:114
subroutine dlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition dlascl.f:143
subroutine dlaset(uplo, m, n, alpha, beta, a, lda)
DLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition dlaset.f:110
subroutine dtrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
DTRSM
Definition dtrsm.f:181
subroutine dtzrzf(m, n, a, lda, tau, work, lwork, info)
DTZRZF
Definition dtzrzf.f:151
subroutine dormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMQR
Definition dormqr.f:167
subroutine dormrz(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info)
DORMRZ
Definition dormrz.f:187
Here is the call graph for this function:
Here is the caller graph for this function: