![]() |
LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dtzrzf | ( | integer | m, |
integer | n, | ||
double precision, dimension( lda, * ) | a, | ||
integer | lda, | ||
double precision, dimension( * ) | tau, | ||
double precision, dimension( * ) | work, | ||
integer | lwork, | ||
integer | info ) |
DTZRZF
Download DTZRZF + dependencies [TGZ] [ZIP] [TXT]
!> !> DTZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A !> to upper triangular form by means of orthogonal transformations. !> !> The upper trapezoidal matrix A is factored as !> !> A = ( R 0 ) * Z, !> !> where Z is an N-by-N orthogonal matrix and R is an M-by-M upper !> triangular matrix. !>
[in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
[in] | N | !> N is INTEGER !> The number of columns of the matrix A. N >= M. !> |
[in,out] | A | !> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the leading M-by-N upper trapezoidal part of the !> array A must contain the matrix to be factorized. !> On exit, the leading M-by-M upper triangular part of A !> contains the upper triangular matrix R, and elements M+1 to !> N of the first M rows of A, with the array TAU, represent the !> orthogonal matrix Z as a product of M elementary reflectors. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
[out] | TAU | !> TAU is DOUBLE PRECISION array, dimension (M) !> The scalar factors of the elementary reflectors. !> |
[out] | WORK | !> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
[in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,M). !> For optimum performance LWORK >= M*NB, where NB is !> the optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> The N-by-N matrix Z can be computed by !> !> Z = Z(1)*Z(2)* ... *Z(M) !> !> where each N-by-N Z(k) is given by !> !> Z(k) = I - tau(k)*v(k)*v(k)**T !> !> with v(k) is the kth row vector of the M-by-N matrix !> !> V = ( I A(:,M+1:N) ) !> !> I is the M-by-M identity matrix, A(:,M+1:N) !> is the output stored in A on exit from DTZRZF, !> and tau(k) is the kth element of the array TAU. !> !>
Definition at line 148 of file dtzrzf.f.