LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dlatrz()

subroutine dlatrz ( integer m,
integer n,
integer l,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( * ) tau,
double precision, dimension( * ) work )

DLATRZ factors an upper trapezoidal matrix by means of orthogonal transformations.

Download DLATRZ + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix
!> [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R  0 ) * Z, by means
!> of orthogonal transformations.  Z is an (M+L)-by-(M+L) orthogonal
!> matrix and, R and A1 are M-by-M upper triangular matrices.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 
[in]L
!>          L is INTEGER
!>          The number of columns of the matrix A containing the
!>          meaningful part of the Householder vectors. N-M >= L >= 0.
!> 
[in,out]A
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the leading M-by-N upper trapezoidal part of the
!>          array A must contain the matrix to be factorized.
!>          On exit, the leading M-by-M upper triangular part of A
!>          contains the upper triangular matrix R, and elements N-L+1 to
!>          N of the first M rows of A, with the array TAU, represent the
!>          orthogonal matrix Z as a product of M elementary reflectors.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 
[out]TAU
!>          TAU is DOUBLE PRECISION array, dimension (M)
!>          The scalar factors of the elementary reflectors.
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (M)
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
Further Details:
!>
!>  The factorization is obtained by Householder's method.  The kth
!>  transformation matrix, Z( k ), which is used to introduce zeros into
!>  the ( m - k + 1 )th row of A, is given in the form
!>
!>     Z( k ) = ( I     0   ),
!>              ( 0  T( k ) )
!>
!>  where
!>
!>     T( k ) = I - tau*u( k )*u( k )**T,   u( k ) = (   1    ),
!>                                                 (   0    )
!>                                                 ( z( k ) )
!>
!>  tau is a scalar and z( k ) is an l element vector. tau and z( k )
!>  are chosen to annihilate the elements of the kth row of A2.
!>
!>  The scalar tau is returned in the kth element of TAU and the vector
!>  u( k ) in the kth row of A2, such that the elements of z( k ) are
!>  in  a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
!>  the upper triangular part of A1.
!>
!>  Z is given by
!>
!>     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
!> 

Definition at line 137 of file dlatrz.f.

138*
139* -- LAPACK computational routine --
140* -- LAPACK is a software package provided by Univ. of Tennessee, --
141* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
142*
143* .. Scalar Arguments ..
144 INTEGER L, LDA, M, N
145* ..
146* .. Array Arguments ..
147 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
148* ..
149*
150* =====================================================================
151*
152* .. Parameters ..
153 DOUBLE PRECISION ZERO
154 parameter( zero = 0.0d+0 )
155* ..
156* .. Local Scalars ..
157 INTEGER I
158* ..
159* .. External Subroutines ..
160 EXTERNAL dlarfg, dlarz
161* ..
162* .. Executable Statements ..
163*
164* Test the input arguments
165*
166* Quick return if possible
167*
168 IF( m.EQ.0 ) THEN
169 RETURN
170 ELSE IF( m.EQ.n ) THEN
171 DO 10 i = 1, n
172 tau( i ) = zero
173 10 CONTINUE
174 RETURN
175 END IF
176*
177 DO 20 i = m, 1, -1
178*
179* Generate elementary reflector H(i) to annihilate
180* [ A(i,i) A(i,n-l+1:n) ]
181*
182 CALL dlarfg( l+1, a( i, i ), a( i, n-l+1 ), lda, tau( i ) )
183*
184* Apply H(i) to A(1:i-1,i:n) from the right
185*
186 CALL dlarz( 'Right', i-1, n-i+1, l, a( i, n-l+1 ), lda,
187 $ tau( i ), a( 1, i ), lda, work )
188*
189 20 CONTINUE
190*
191 RETURN
192*
193* End of DLATRZ
194*
subroutine dlarfg(n, alpha, x, incx, tau)
DLARFG generates an elementary reflector (Householder matrix).
Definition dlarfg.f:104
subroutine dlarz(side, m, n, l, v, incv, tau, c, ldc, work)
DLARZ applies an elementary reflector (as returned by stzrzf) to a general matrix.
Definition dlarz.f:143
Here is the call graph for this function:
Here is the caller graph for this function: