LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cchkgt.f
Go to the documentation of this file.
1*> \brief \b CCHKGT
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE CCHKGT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
12* A, AF, B, X, XACT, WORK, RWORK, IWORK, NOUT )
13*
14* .. Scalar Arguments ..
15* LOGICAL TSTERR
16* INTEGER NN, NNS, NOUT
17* REAL THRESH
18* ..
19* .. Array Arguments ..
20* LOGICAL DOTYPE( * )
21* INTEGER IWORK( * ), NSVAL( * ), NVAL( * )
22* REAL RWORK( * )
23* COMPLEX A( * ), AF( * ), B( * ), WORK( * ), X( * ),
24* $ XACT( * )
25* ..
26*
27*
28*> \par Purpose:
29* =============
30*>
31*> \verbatim
32*>
33*> CCHKGT tests CGTTRF, -TRS, -RFS, and -CON
34*> \endverbatim
35*
36* Arguments:
37* ==========
38*
39*> \param[in] DOTYPE
40*> \verbatim
41*> DOTYPE is LOGICAL array, dimension (NTYPES)
42*> The matrix types to be used for testing. Matrices of type j
43*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
44*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
45*> \endverbatim
46*>
47*> \param[in] NN
48*> \verbatim
49*> NN is INTEGER
50*> The number of values of N contained in the vector NVAL.
51*> \endverbatim
52*>
53*> \param[in] NVAL
54*> \verbatim
55*> NVAL is INTEGER array, dimension (NN)
56*> The values of the matrix dimension N.
57*> \endverbatim
58*>
59*> \param[in] NNS
60*> \verbatim
61*> NNS is INTEGER
62*> The number of values of NRHS contained in the vector NSVAL.
63*> \endverbatim
64*>
65*> \param[in] NSVAL
66*> \verbatim
67*> NSVAL is INTEGER array, dimension (NNS)
68*> The values of the number of right hand sides NRHS.
69*> \endverbatim
70*>
71*> \param[in] THRESH
72*> \verbatim
73*> THRESH is REAL
74*> The threshold value for the test ratios. A result is
75*> included in the output file if RESULT >= THRESH. To have
76*> every test ratio printed, use THRESH = 0.
77*> \endverbatim
78*>
79*> \param[in] TSTERR
80*> \verbatim
81*> TSTERR is LOGICAL
82*> Flag that indicates whether error exits are to be tested.
83*> \endverbatim
84*>
85*> \param[out] A
86*> \verbatim
87*> A is COMPLEX array, dimension (NMAX*4)
88*> \endverbatim
89*>
90*> \param[out] AF
91*> \verbatim
92*> AF is COMPLEX array, dimension (NMAX*4)
93*> \endverbatim
94*>
95*> \param[out] B
96*> \verbatim
97*> B is COMPLEX array, dimension (NMAX*NSMAX)
98*> where NSMAX is the largest entry in NSVAL.
99*> \endverbatim
100*>
101*> \param[out] X
102*> \verbatim
103*> X is COMPLEX array, dimension (NMAX*NSMAX)
104*> \endverbatim
105*>
106*> \param[out] XACT
107*> \verbatim
108*> XACT is COMPLEX array, dimension (NMAX*NSMAX)
109*> \endverbatim
110*>
111*> \param[out] WORK
112*> \verbatim
113*> WORK is COMPLEX array, dimension
114*> (NMAX*max(3,NSMAX))
115*> \endverbatim
116*>
117*> \param[out] RWORK
118*> \verbatim
119*> RWORK is REAL array, dimension
120*> (max(NMAX)+2*NSMAX)
121*> \endverbatim
122*>
123*> \param[out] IWORK
124*> \verbatim
125*> IWORK is INTEGER array, dimension (NMAX)
126*> \endverbatim
127*>
128*> \param[in] NOUT
129*> \verbatim
130*> NOUT is INTEGER
131*> The unit number for output.
132*> \endverbatim
133*
134* Authors:
135* ========
136*
137*> \author Univ. of Tennessee
138*> \author Univ. of California Berkeley
139*> \author Univ. of Colorado Denver
140*> \author NAG Ltd.
141*
142*> \ingroup complex_lin
143*
144* =====================================================================
145 SUBROUTINE cchkgt( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
146 $ A, AF, B, X, XACT, WORK, RWORK, IWORK, NOUT )
147*
148* -- LAPACK test routine --
149* -- LAPACK is a software package provided by Univ. of Tennessee, --
150* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
151*
152* .. Scalar Arguments ..
153 LOGICAL TSTERR
154 INTEGER NN, NNS, NOUT
155 REAL THRESH
156* ..
157* .. Array Arguments ..
158 LOGICAL DOTYPE( * )
159 INTEGER IWORK( * ), NSVAL( * ), NVAL( * )
160 REAL RWORK( * )
161 COMPLEX A( * ), AF( * ), B( * ), WORK( * ), X( * ),
162 $ xact( * )
163* ..
164*
165* =====================================================================
166*
167* .. Parameters ..
168 REAL ONE, ZERO
169 parameter( one = 1.0e+0, zero = 0.0e+0 )
170 INTEGER NTYPES
171 parameter( ntypes = 12 )
172 INTEGER NTESTS
173 parameter( ntests = 7 )
174* ..
175* .. Local Scalars ..
176 LOGICAL TRFCON, ZEROT
177 CHARACTER DIST, NORM, TRANS, TYPE
178 CHARACTER*3 PATH
179 INTEGER I, IMAT, IN, INFO, IRHS, ITRAN, IX, IZERO, J,
180 $ k, kl, koff, ku, lda, m, mode, n, nerrs, nfail,
181 $ nimat, nrhs, nrun
182 REAL AINVNM, ANORM, COND, RCOND, RCONDC, RCONDI,
183 $ rcondo
184* ..
185* .. Local Arrays ..
186 CHARACTER TRANSS( 3 )
187 INTEGER ISEED( 4 ), ISEEDY( 4 )
188 REAL RESULT( NTESTS )
189 COMPLEX Z( 3 )
190* ..
191* .. External Functions ..
192 REAL CLANGT, SCASUM, SGET06
193 EXTERNAL clangt, scasum, sget06
194* ..
195* .. External Subroutines ..
196 EXTERNAL alaerh, alahd, alasum, ccopy, cerrge, cget04,
199 $ csscal
200* ..
201* .. Intrinsic Functions ..
202 INTRINSIC max
203* ..
204* .. Scalars in Common ..
205 LOGICAL LERR, OK
206 CHARACTER*32 SRNAMT
207 INTEGER INFOT, NUNIT
208* ..
209* .. Common blocks ..
210 COMMON / infoc / infot, nunit, ok, lerr
211 COMMON / srnamc / srnamt
212* ..
213* .. Data statements ..
214 DATA iseedy / 0, 0, 0, 1 / , transs / 'N', 'T',
215 $ 'C' /
216* ..
217* .. Executable Statements ..
218*
219 path( 1: 1 ) = 'Complex precision'
220 path( 2: 3 ) = 'GT'
221 nrun = 0
222 nfail = 0
223 nerrs = 0
224 DO 10 i = 1, 4
225 iseed( i ) = iseedy( i )
226 10 CONTINUE
227*
228* Test the error exits
229*
230 IF( tsterr )
231 $ CALL cerrge( path, nout )
232 infot = 0
233*
234 DO 110 in = 1, nn
235*
236* Do for each value of N in NVAL.
237*
238 n = nval( in )
239 m = max( n-1, 0 )
240 lda = max( 1, n )
241 nimat = ntypes
242 IF( n.LE.0 )
243 $ nimat = 1
244*
245 DO 100 imat = 1, nimat
246*
247* Do the tests only if DOTYPE( IMAT ) is true.
248*
249 IF( .NOT.dotype( imat ) )
250 $ GO TO 100
251*
252* Set up parameters with CLATB4.
253*
254 CALL clatb4( path, imat, n, n, TYPE, kl, ku, anorm, mode,
255 $ cond, dist )
256*
257 zerot = imat.GE.8 .AND. imat.LE.10
258 IF( imat.LE.6 ) THEN
259*
260* Types 1-6: generate matrices of known condition number.
261*
262 koff = max( 2-ku, 3-max( 1, n ) )
263 srnamt = 'CLATMS'
264 CALL clatms( n, n, dist, iseed, TYPE, rwork, mode, cond,
265 $ anorm, kl, ku, 'Z', af( koff ), 3, work,
266 $ info )
267*
268* Check the error code from CLATMS.
269*
270 IF( info.NE.0 ) THEN
271 CALL alaerh( path, 'CLATMS', info, 0, ' ', n, n, kl,
272 $ ku, -1, imat, nfail, nerrs, nout )
273 GO TO 100
274 END IF
275 izero = 0
276*
277 IF( n.GT.1 ) THEN
278 CALL ccopy( n-1, af( 4 ), 3, a, 1 )
279 CALL ccopy( n-1, af( 3 ), 3, a( n+m+1 ), 1 )
280 END IF
281 CALL ccopy( n, af( 2 ), 3, a( m+1 ), 1 )
282 ELSE
283*
284* Types 7-12: generate tridiagonal matrices with
285* unknown condition numbers.
286*
287 IF( .NOT.zerot .OR. .NOT.dotype( 7 ) ) THEN
288*
289* Generate a matrix with elements whose real and
290* imaginary parts are from [-1,1].
291*
292 CALL clarnv( 2, iseed, n+2*m, a )
293 IF( anorm.NE.one )
294 $ CALL csscal( n+2*m, anorm, a, 1 )
295 ELSE IF( izero.GT.0 ) THEN
296*
297* Reuse the last matrix by copying back the zeroed out
298* elements.
299*
300 IF( izero.EQ.1 ) THEN
301 a( n ) = z( 2 )
302 IF( n.GT.1 )
303 $ a( 1 ) = z( 3 )
304 ELSE IF( izero.EQ.n ) THEN
305 a( 3*n-2 ) = z( 1 )
306 a( 2*n-1 ) = z( 2 )
307 ELSE
308 a( 2*n-2+izero ) = z( 1 )
309 a( n-1+izero ) = z( 2 )
310 a( izero ) = z( 3 )
311 END IF
312 END IF
313*
314* If IMAT > 7, set one column of the matrix to 0.
315*
316 IF( .NOT.zerot ) THEN
317 izero = 0
318 ELSE IF( imat.EQ.8 ) THEN
319 izero = 1
320 z( 2 ) = a( n )
321 a( n ) = zero
322 IF( n.GT.1 ) THEN
323 z( 3 ) = a( 1 )
324 a( 1 ) = zero
325 END IF
326 ELSE IF( imat.EQ.9 ) THEN
327 izero = n
328 z( 1 ) = a( 3*n-2 )
329 z( 2 ) = a( 2*n-1 )
330 a( 3*n-2 ) = zero
331 a( 2*n-1 ) = zero
332 ELSE
333 izero = ( n+1 ) / 2
334 DO 20 i = izero, n - 1
335 a( 2*n-2+i ) = zero
336 a( n-1+i ) = zero
337 a( i ) = zero
338 20 CONTINUE
339 a( 3*n-2 ) = zero
340 a( 2*n-1 ) = zero
341 END IF
342 END IF
343*
344*+ TEST 1
345* Factor A as L*U and compute the ratio
346* norm(L*U - A) / (n * norm(A) * EPS )
347*
348 CALL ccopy( n+2*m, a, 1, af, 1 )
349 srnamt = 'CGTTRF'
350 CALL cgttrf( n, af, af( m+1 ), af( n+m+1 ), af( n+2*m+1 ),
351 $ iwork, info )
352*
353* Check error code from CGTTRF.
354*
355 IF( info.NE.izero )
356 $ CALL alaerh( path, 'CGTTRF', info, izero, ' ', n, n, 1,
357 $ 1, -1, imat, nfail, nerrs, nout )
358 trfcon = info.NE.0
359*
360 CALL cgtt01( n, a, a( m+1 ), a( n+m+1 ), af, af( m+1 ),
361 $ af( n+m+1 ), af( n+2*m+1 ), iwork, work, lda,
362 $ rwork, result( 1 ) )
363*
364* Print the test ratio if it is .GE. THRESH.
365*
366 IF( result( 1 ).GE.thresh ) THEN
367 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
368 $ CALL alahd( nout, path )
369 WRITE( nout, fmt = 9999 )n, imat, 1, result( 1 )
370 nfail = nfail + 1
371 END IF
372 nrun = nrun + 1
373*
374 DO 50 itran = 1, 2
375 trans = transs( itran )
376 IF( itran.EQ.1 ) THEN
377 norm = 'O'
378 ELSE
379 norm = 'I'
380 END IF
381 anorm = clangt( norm, n, a, a( m+1 ), a( n+m+1 ) )
382*
383 IF( .NOT.trfcon ) THEN
384*
385* Use CGTTRS to solve for one column at a time of
386* inv(A), computing the maximum column sum as we go.
387*
388 ainvnm = zero
389 DO 40 i = 1, n
390 DO 30 j = 1, n
391 x( j ) = zero
392 30 CONTINUE
393 x( i ) = one
394 CALL cgttrs( trans, n, 1, af, af( m+1 ),
395 $ af( n+m+1 ), af( n+2*m+1 ), iwork, x,
396 $ lda, info )
397 ainvnm = max( ainvnm, scasum( n, x, 1 ) )
398 40 CONTINUE
399*
400* Compute RCONDC = 1 / (norm(A) * norm(inv(A))
401*
402 IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
403 rcondc = one
404 ELSE
405 rcondc = ( one / anorm ) / ainvnm
406 END IF
407 IF( itran.EQ.1 ) THEN
408 rcondo = rcondc
409 ELSE
410 rcondi = rcondc
411 END IF
412 ELSE
413 rcondc = zero
414 END IF
415*
416*+ TEST 7
417* Estimate the reciprocal of the condition number of the
418* matrix.
419*
420 srnamt = 'CGTCON'
421 CALL cgtcon( norm, n, af, af( m+1 ), af( n+m+1 ),
422 $ af( n+2*m+1 ), iwork, anorm, rcond, work,
423 $ info )
424*
425* Check error code from CGTCON.
426*
427 IF( info.NE.0 )
428 $ CALL alaerh( path, 'CGTCON', info, 0, norm, n, n, -1,
429 $ -1, -1, imat, nfail, nerrs, nout )
430*
431 result( 7 ) = sget06( rcond, rcondc )
432*
433* Print the test ratio if it is .GE. THRESH.
434*
435 IF( result( 7 ).GE.thresh ) THEN
436 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
437 $ CALL alahd( nout, path )
438 WRITE( nout, fmt = 9997 )norm, n, imat, 7,
439 $ result( 7 )
440 nfail = nfail + 1
441 END IF
442 nrun = nrun + 1
443 50 CONTINUE
444*
445* Skip the remaining tests if the matrix is singular.
446*
447 IF( trfcon )
448 $ GO TO 100
449*
450 DO 90 irhs = 1, nns
451 nrhs = nsval( irhs )
452*
453* Generate NRHS random solution vectors.
454*
455 ix = 1
456 DO 60 j = 1, nrhs
457 CALL clarnv( 2, iseed, n, xact( ix ) )
458 ix = ix + lda
459 60 CONTINUE
460*
461 DO 80 itran = 1, 3
462 trans = transs( itran )
463 IF( itran.EQ.1 ) THEN
464 rcondc = rcondo
465 ELSE
466 rcondc = rcondi
467 END IF
468*
469* Set the right hand side.
470*
471 CALL clagtm( trans, n, nrhs, one, a,
472 $ a( m+1 ), a( n+m+1 ), xact, lda,
473 $ zero, b, lda )
474*
475*+ TEST 2
476* Solve op(A) * X = B and compute the residual.
477*
478 CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
479 srnamt = 'CGTTRS'
480 CALL cgttrs( trans, n, nrhs, af, af( m+1 ),
481 $ af( n+m+1 ), af( n+2*m+1 ), iwork, x,
482 $ lda, info )
483*
484* Check error code from CGTTRS.
485*
486 IF( info.NE.0 )
487 $ CALL alaerh( path, 'CGTTRS', info, 0, trans, n, n,
488 $ -1, -1, nrhs, imat, nfail, nerrs,
489 $ nout )
490*
491 CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
492 CALL cgtt02( trans, n, nrhs, a, a( m+1 ), a( n+m+1 ),
493 $ x, lda, work, lda, result( 2 ) )
494*
495*+ TEST 3
496* Check solution from generated exact solution.
497*
498 CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
499 $ result( 3 ) )
500*
501*+ TESTS 4, 5, and 6
502* Use iterative refinement to improve the solution.
503*
504 srnamt = 'CGTRFS'
505 CALL cgtrfs( trans, n, nrhs, a, a( m+1 ), a( n+m+1 ),
506 $ af, af( m+1 ), af( n+m+1 ),
507 $ af( n+2*m+1 ), iwork, b, lda, x, lda,
508 $ rwork, rwork( nrhs+1 ), work,
509 $ rwork( 2*nrhs+1 ), info )
510*
511* Check error code from CGTRFS.
512*
513 IF( info.NE.0 )
514 $ CALL alaerh( path, 'CGTRFS', info, 0, trans, n, n,
515 $ -1, -1, nrhs, imat, nfail, nerrs,
516 $ nout )
517*
518 CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
519 $ result( 4 ) )
520 CALL cgtt05( trans, n, nrhs, a, a( m+1 ), a( n+m+1 ),
521 $ b, lda, x, lda, xact, lda, rwork,
522 $ rwork( nrhs+1 ), result( 5 ) )
523*
524* Print information about the tests that did not pass the
525* threshold.
526*
527 DO 70 k = 2, 6
528 IF( result( k ).GE.thresh ) THEN
529 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
530 $ CALL alahd( nout, path )
531 WRITE( nout, fmt = 9998 )trans, n, nrhs, imat,
532 $ k, result( k )
533 nfail = nfail + 1
534 END IF
535 70 CONTINUE
536 nrun = nrun + 5
537 80 CONTINUE
538 90 CONTINUE
539 100 CONTINUE
540 110 CONTINUE
541*
542* Print a summary of the results.
543*
544 CALL alasum( path, nout, nfail, nrun, nerrs )
545*
546 9999 FORMAT( 12x, 'N =', i5, ',', 10x, ' type ', i2, ', test(', i2,
547 $ ') = ', g12.5 )
548 9998 FORMAT( ' TRANS=''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
549 $ i2, ', test(', i2, ') = ', g12.5 )
550 9997 FORMAT( ' NORM =''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
551 $ ', test(', i2, ') = ', g12.5 )
552 RETURN
553*
554* End of CCHKGT
555*
556 END
subroutine alasum(type, nout, nfail, nrun, nerrs)
ALASUM
Definition alasum.f:73
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine alahd(iounit, path)
ALAHD
Definition alahd.f:107
subroutine cchkgt(dotype, nn, nval, nns, nsval, thresh, tsterr, a, af, b, x, xact, work, rwork, iwork, nout)
CCHKGT
Definition cchkgt.f:147
subroutine cerrge(path, nunit)
CERRGE
Definition cerrge.f:55
subroutine cget04(n, nrhs, x, ldx, xact, ldxact, rcond, resid)
CGET04
Definition cget04.f:102
subroutine cgtt01(n, dl, d, du, dlf, df, duf, du2, ipiv, work, ldwork, rwork, resid)
CGTT01
Definition cgtt01.f:134
subroutine cgtt02(trans, n, nrhs, dl, d, du, x, ldx, b, ldb, resid)
CGTT02
Definition cgtt02.f:124
subroutine cgtt05(trans, n, nrhs, dl, d, du, b, ldb, x, ldx, xact, ldxact, ferr, berr, reslts)
CGTT05
Definition cgtt05.f:165
subroutine clatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
CLATB4
Definition clatb4.f:121
subroutine clatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
CLATMS
Definition clatms.f:332
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
subroutine cgtcon(norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, info)
CGTCON
Definition cgtcon.f:139
subroutine cgtrfs(trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CGTRFS
Definition cgtrfs.f:209
subroutine cgttrf(n, dl, d, du, du2, ipiv, info)
CGTTRF
Definition cgttrf.f:122
subroutine cgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)
CGTTRS
Definition cgttrs.f:137
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:101
subroutine clagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)
CLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix,...
Definition clagtm.f:144
subroutine clarnv(idist, iseed, n, x)
CLARNV returns a vector of random numbers from a uniform or normal distribution.
Definition clarnv.f:97
subroutine csscal(n, sa, cx, incx)
CSSCAL
Definition csscal.f:78