LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cgtrfs()

subroutine cgtrfs ( character trans,
integer n,
integer nrhs,
complex, dimension( * ) dl,
complex, dimension( * ) d,
complex, dimension( * ) du,
complex, dimension( * ) dlf,
complex, dimension( * ) df,
complex, dimension( * ) duf,
complex, dimension( * ) du2,
integer, dimension( * ) ipiv,
complex, dimension( ldb, * ) b,
integer ldb,
complex, dimension( ldx, * ) x,
integer ldx,
real, dimension( * ) ferr,
real, dimension( * ) berr,
complex, dimension( * ) work,
real, dimension( * ) rwork,
integer info )

CGTRFS

Download CGTRFS + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CGTRFS improves the computed solution to a system of linear
!> equations when the coefficient matrix is tridiagonal, and provides
!> error bounds and backward error estimates for the solution.
!> 
Parameters
[in]TRANS
!>          TRANS is CHARACTER*1
!>          Specifies the form of the system of equations:
!>          = 'N':  A * X = B     (No transpose)
!>          = 'T':  A**T * X = B  (Transpose)
!>          = 'C':  A**H * X = B  (Conjugate transpose)
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 
[in]DL
!>          DL is COMPLEX array, dimension (N-1)
!>          The (n-1) subdiagonal elements of A.
!> 
[in]D
!>          D is COMPLEX array, dimension (N)
!>          The diagonal elements of A.
!> 
[in]DU
!>          DU is COMPLEX array, dimension (N-1)
!>          The (n-1) superdiagonal elements of A.
!> 
[in]DLF
!>          DLF is COMPLEX array, dimension (N-1)
!>          The (n-1) multipliers that define the matrix L from the
!>          LU factorization of A as computed by CGTTRF.
!> 
[in]DF
!>          DF is COMPLEX array, dimension (N)
!>          The n diagonal elements of the upper triangular matrix U from
!>          the LU factorization of A.
!> 
[in]DUF
!>          DUF is COMPLEX array, dimension (N-1)
!>          The (n-1) elements of the first superdiagonal of U.
!> 
[in]DU2
!>          DU2 is COMPLEX array, dimension (N-2)
!>          The (n-2) elements of the second superdiagonal of U.
!> 
[in]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          The pivot indices; for 1 <= i <= n, row i of the matrix was
!>          interchanged with row IPIV(i).  IPIV(i) will always be either
!>          i or i+1; IPIV(i) = i indicates a row interchange was not
!>          required.
!> 
[in]B
!>          B is COMPLEX array, dimension (LDB,NRHS)
!>          The right hand side matrix B.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[in,out]X
!>          X is COMPLEX array, dimension (LDX,NRHS)
!>          On entry, the solution matrix X, as computed by CGTTRS.
!>          On exit, the improved solution matrix X.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 
[out]FERR
!>          FERR is REAL array, dimension (NRHS)
!>          The estimated forward error bound for each solution vector
!>          X(j) (the j-th column of the solution matrix X).
!>          If XTRUE is the true solution corresponding to X(j), FERR(j)
!>          is an estimated upper bound for the magnitude of the largest
!>          element in (X(j) - XTRUE) divided by the magnitude of the
!>          largest element in X(j).  The estimate is as reliable as
!>          the estimate for RCOND, and is almost always a slight
!>          overestimate of the true error.
!> 
[out]BERR
!>          BERR is REAL array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector X(j) (i.e., the smallest relative change in
!>          any element of A or B that makes X(j) an exact solution).
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (2*N)
!> 
[out]RWORK
!>          RWORK is REAL array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Internal Parameters:
!>  ITMAX is the maximum number of steps of iterative refinement.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 205 of file cgtrfs.f.

209*
210* -- LAPACK computational routine --
211* -- LAPACK is a software package provided by Univ. of Tennessee, --
212* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
213*
214* .. Scalar Arguments ..
215 CHARACTER TRANS
216 INTEGER INFO, LDB, LDX, N, NRHS
217* ..
218* .. Array Arguments ..
219 INTEGER IPIV( * )
220 REAL BERR( * ), FERR( * ), RWORK( * )
221 COMPLEX B( LDB, * ), D( * ), DF( * ), DL( * ),
222 $ DLF( * ), DU( * ), DU2( * ), DUF( * ),
223 $ WORK( * ), X( LDX, * )
224* ..
225*
226* =====================================================================
227*
228* .. Parameters ..
229 INTEGER ITMAX
230 parameter( itmax = 5 )
231 REAL ZERO, ONE
232 parameter( zero = 0.0e+0, one = 1.0e+0 )
233 REAL TWO
234 parameter( two = 2.0e+0 )
235 REAL THREE
236 parameter( three = 3.0e+0 )
237* ..
238* .. Local Scalars ..
239 LOGICAL NOTRAN
240 CHARACTER TRANSN, TRANST
241 INTEGER COUNT, I, J, KASE, NZ
242 REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN
243 COMPLEX ZDUM
244* ..
245* .. Local Arrays ..
246 INTEGER ISAVE( 3 )
247* ..
248* .. External Subroutines ..
249 EXTERNAL caxpy, ccopy, cgttrs, clacn2, clagtm,
250 $ xerbla
251* ..
252* .. Intrinsic Functions ..
253 INTRINSIC abs, aimag, cmplx, max, real
254* ..
255* .. External Functions ..
256 LOGICAL LSAME
257 REAL SLAMCH
258 EXTERNAL lsame, slamch
259* ..
260* .. Statement Functions ..
261 REAL CABS1
262* ..
263* .. Statement Function definitions ..
264 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
265* ..
266* .. Executable Statements ..
267*
268* Test the input parameters.
269*
270 info = 0
271 notran = lsame( trans, 'N' )
272 IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) .AND. .NOT.
273 $ lsame( trans, 'C' ) ) THEN
274 info = -1
275 ELSE IF( n.LT.0 ) THEN
276 info = -2
277 ELSE IF( nrhs.LT.0 ) THEN
278 info = -3
279 ELSE IF( ldb.LT.max( 1, n ) ) THEN
280 info = -13
281 ELSE IF( ldx.LT.max( 1, n ) ) THEN
282 info = -15
283 END IF
284 IF( info.NE.0 ) THEN
285 CALL xerbla( 'CGTRFS', -info )
286 RETURN
287 END IF
288*
289* Quick return if possible
290*
291 IF( n.EQ.0 .OR. nrhs.EQ.0 ) THEN
292 DO 10 j = 1, nrhs
293 ferr( j ) = zero
294 berr( j ) = zero
295 10 CONTINUE
296 RETURN
297 END IF
298*
299 IF( notran ) THEN
300 transn = 'N'
301 transt = 'C'
302 ELSE
303 transn = 'C'
304 transt = 'N'
305 END IF
306*
307* NZ = maximum number of nonzero elements in each row of A, plus 1
308*
309 nz = 4
310 eps = slamch( 'Epsilon' )
311 safmin = slamch( 'Safe minimum' )
312 safe1 = real( nz )*safmin
313 safe2 = safe1 / eps
314*
315* Do for each right hand side
316*
317 DO 110 j = 1, nrhs
318*
319 count = 1
320 lstres = three
321 20 CONTINUE
322*
323* Loop until stopping criterion is satisfied.
324*
325* Compute residual R = B - op(A) * X,
326* where op(A) = A, A**T, or A**H, depending on TRANS.
327*
328 CALL ccopy( n, b( 1, j ), 1, work, 1 )
329 CALL clagtm( trans, n, 1, -one, dl, d, du, x( 1, j ), ldx,
330 $ one,
331 $ work, n )
332*
333* Compute abs(op(A))*abs(x) + abs(b) for use in the backward
334* error bound.
335*
336 IF( notran ) THEN
337 IF( n.EQ.1 ) THEN
338 rwork( 1 ) = cabs1( b( 1, j ) ) +
339 $ cabs1( d( 1 ) )*cabs1( x( 1, j ) )
340 ELSE
341 rwork( 1 ) = cabs1( b( 1, j ) ) +
342 $ cabs1( d( 1 ) )*cabs1( x( 1, j ) ) +
343 $ cabs1( du( 1 ) )*cabs1( x( 2, j ) )
344 DO 30 i = 2, n - 1
345 rwork( i ) = cabs1( b( i, j ) ) +
346 $ cabs1( dl( i-1 ) )*cabs1( x( i-1, j ) ) +
347 $ cabs1( d( i ) )*cabs1( x( i, j ) ) +
348 $ cabs1( du( i ) )*cabs1( x( i+1, j ) )
349 30 CONTINUE
350 rwork( n ) = cabs1( b( n, j ) ) +
351 $ cabs1( dl( n-1 ) )*cabs1( x( n-1, j ) ) +
352 $ cabs1( d( n ) )*cabs1( x( n, j ) )
353 END IF
354 ELSE
355 IF( n.EQ.1 ) THEN
356 rwork( 1 ) = cabs1( b( 1, j ) ) +
357 $ cabs1( d( 1 ) )*cabs1( x( 1, j ) )
358 ELSE
359 rwork( 1 ) = cabs1( b( 1, j ) ) +
360 $ cabs1( d( 1 ) )*cabs1( x( 1, j ) ) +
361 $ cabs1( dl( 1 ) )*cabs1( x( 2, j ) )
362 DO 40 i = 2, n - 1
363 rwork( i ) = cabs1( b( i, j ) ) +
364 $ cabs1( du( i-1 ) )*cabs1( x( i-1, j ) ) +
365 $ cabs1( d( i ) )*cabs1( x( i, j ) ) +
366 $ cabs1( dl( i ) )*cabs1( x( i+1, j ) )
367 40 CONTINUE
368 rwork( n ) = cabs1( b( n, j ) ) +
369 $ cabs1( du( n-1 ) )*cabs1( x( n-1, j ) ) +
370 $ cabs1( d( n ) )*cabs1( x( n, j ) )
371 END IF
372 END IF
373*
374* Compute componentwise relative backward error from formula
375*
376* max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
377*
378* where abs(Z) is the componentwise absolute value of the matrix
379* or vector Z. If the i-th component of the denominator is less
380* than SAFE2, then SAFE1 is added to the i-th components of the
381* numerator and denominator before dividing.
382*
383 s = zero
384 DO 50 i = 1, n
385 IF( rwork( i ).GT.safe2 ) THEN
386 s = max( s, cabs1( work( i ) ) / rwork( i ) )
387 ELSE
388 s = max( s, ( cabs1( work( i ) )+safe1 ) /
389 $ ( rwork( i )+safe1 ) )
390 END IF
391 50 CONTINUE
392 berr( j ) = s
393*
394* Test stopping criterion. Continue iterating if
395* 1) The residual BERR(J) is larger than machine epsilon, and
396* 2) BERR(J) decreased by at least a factor of 2 during the
397* last iteration, and
398* 3) At most ITMAX iterations tried.
399*
400 IF( berr( j ).GT.eps .AND. two*berr( j ).LE.lstres .AND.
401 $ count.LE.itmax ) THEN
402*
403* Update solution and try again.
404*
405 CALL cgttrs( trans, n, 1, dlf, df, duf, du2, ipiv, work,
406 $ n,
407 $ info )
408 CALL caxpy( n, cmplx( one ), work, 1, x( 1, j ), 1 )
409 lstres = berr( j )
410 count = count + 1
411 GO TO 20
412 END IF
413*
414* Bound error from formula
415*
416* norm(X - XTRUE) / norm(X) .le. FERR =
417* norm( abs(inv(op(A)))*
418* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
419*
420* where
421* norm(Z) is the magnitude of the largest component of Z
422* inv(op(A)) is the inverse of op(A)
423* abs(Z) is the componentwise absolute value of the matrix or
424* vector Z
425* NZ is the maximum number of nonzeros in any row of A, plus 1
426* EPS is machine epsilon
427*
428* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
429* is incremented by SAFE1 if the i-th component of
430* abs(op(A))*abs(X) + abs(B) is less than SAFE2.
431*
432* Use CLACN2 to estimate the infinity-norm of the matrix
433* inv(op(A)) * diag(W),
434* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
435*
436 DO 60 i = 1, n
437 IF( rwork( i ).GT.safe2 ) THEN
438 rwork( i ) = cabs1( work( i ) ) + real( nz )*
439 $ eps*rwork( i )
440 ELSE
441 rwork( i ) = cabs1( work( i ) ) + real( nz )*
442 $ eps*rwork( i ) + safe1
443 END IF
444 60 CONTINUE
445*
446 kase = 0
447 70 CONTINUE
448 CALL clacn2( n, work( n+1 ), work, ferr( j ), kase, isave )
449 IF( kase.NE.0 ) THEN
450 IF( kase.EQ.1 ) THEN
451*
452* Multiply by diag(W)*inv(op(A)**H).
453*
454 CALL cgttrs( transt, n, 1, dlf, df, duf, du2, ipiv,
455 $ work,
456 $ n, info )
457 DO 80 i = 1, n
458 work( i ) = rwork( i )*work( i )
459 80 CONTINUE
460 ELSE
461*
462* Multiply by inv(op(A))*diag(W).
463*
464 DO 90 i = 1, n
465 work( i ) = rwork( i )*work( i )
466 90 CONTINUE
467 CALL cgttrs( transn, n, 1, dlf, df, duf, du2, ipiv,
468 $ work,
469 $ n, info )
470 END IF
471 GO TO 70
472 END IF
473*
474* Normalize error.
475*
476 lstres = zero
477 DO 100 i = 1, n
478 lstres = max( lstres, cabs1( x( i, j ) ) )
479 100 CONTINUE
480 IF( lstres.NE.zero )
481 $ ferr( j ) = ferr( j ) / lstres
482*
483 110 CONTINUE
484*
485 RETURN
486*
487* End of CGTRFS
488*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine caxpy(n, ca, cx, incx, cy, incy)
CAXPY
Definition caxpy.f:88
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
subroutine cgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)
CGTTRS
Definition cgttrs.f:137
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition clacn2.f:131
subroutine clagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)
CLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix,...
Definition clagtm.f:144
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: