LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dtrsen.f
Go to the documentation of this file.
1*> \brief \b DTRSEN
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DTRSEN + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrsen.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrsen.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrsen.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
22* M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
23*
24* .. Scalar Arguments ..
25* CHARACTER COMPQ, JOB
26* INTEGER INFO, LDQ, LDT, LIWORK, LWORK, M, N
27* DOUBLE PRECISION S, SEP
28* ..
29* .. Array Arguments ..
30* LOGICAL SELECT( * )
31* INTEGER IWORK( * )
32* DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
33* $ WR( * )
34* ..
35*
36*
37*> \par Purpose:
38* =============
39*>
40*> \verbatim
41*>
42*> DTRSEN reorders the real Schur factorization of a real matrix
43*> A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
44*> the leading diagonal blocks of the upper quasi-triangular matrix T,
45*> and the leading columns of Q form an orthonormal basis of the
46*> corresponding right invariant subspace.
47*>
48*> Optionally the routine computes the reciprocal condition numbers of
49*> the cluster of eigenvalues and/or the invariant subspace.
50*>
51*> T must be in Schur canonical form (as returned by DHSEQR), that is,
52*> block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
53*> 2-by-2 diagonal block has its diagonal elements equal and its
54*> off-diagonal elements of opposite sign.
55*> \endverbatim
56*
57* Arguments:
58* ==========
59*
60*> \param[in] JOB
61*> \verbatim
62*> JOB is CHARACTER*1
63*> Specifies whether condition numbers are required for the
64*> cluster of eigenvalues (S) or the invariant subspace (SEP):
65*> = 'N': none;
66*> = 'E': for eigenvalues only (S);
67*> = 'V': for invariant subspace only (SEP);
68*> = 'B': for both eigenvalues and invariant subspace (S and
69*> SEP).
70*> \endverbatim
71*>
72*> \param[in] COMPQ
73*> \verbatim
74*> COMPQ is CHARACTER*1
75*> = 'V': update the matrix Q of Schur vectors;
76*> = 'N': do not update Q.
77*> \endverbatim
78*>
79*> \param[in] SELECT
80*> \verbatim
81*> SELECT is LOGICAL array, dimension (N)
82*> SELECT specifies the eigenvalues in the selected cluster. To
83*> select a real eigenvalue w(j), SELECT(j) must be set to
84*> .TRUE.. To select a complex conjugate pair of eigenvalues
85*> w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
86*> either SELECT(j) or SELECT(j+1) or both must be set to
87*> .TRUE.; a complex conjugate pair of eigenvalues must be
88*> either both included in the cluster or both excluded.
89*> \endverbatim
90*>
91*> \param[in] N
92*> \verbatim
93*> N is INTEGER
94*> The order of the matrix T. N >= 0.
95*> \endverbatim
96*>
97*> \param[in,out] T
98*> \verbatim
99*> T is DOUBLE PRECISION array, dimension (LDT,N)
100*> On entry, the upper quasi-triangular matrix T, in Schur
101*> canonical form.
102*> On exit, T is overwritten by the reordered matrix T, again in
103*> Schur canonical form, with the selected eigenvalues in the
104*> leading diagonal blocks.
105*> \endverbatim
106*>
107*> \param[in] LDT
108*> \verbatim
109*> LDT is INTEGER
110*> The leading dimension of the array T. LDT >= max(1,N).
111*> \endverbatim
112*>
113*> \param[in,out] Q
114*> \verbatim
115*> Q is DOUBLE PRECISION array, dimension (LDQ,N)
116*> On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
117*> On exit, if COMPQ = 'V', Q has been postmultiplied by the
118*> orthogonal transformation matrix which reorders T; the
119*> leading M columns of Q form an orthonormal basis for the
120*> specified invariant subspace.
121*> If COMPQ = 'N', Q is not referenced.
122*> \endverbatim
123*>
124*> \param[in] LDQ
125*> \verbatim
126*> LDQ is INTEGER
127*> The leading dimension of the array Q.
128*> LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
129*> \endverbatim
130*>
131*> \param[out] WR
132*> \verbatim
133*> WR is DOUBLE PRECISION array, dimension (N)
134*> \endverbatim
135*> \param[out] WI
136*> \verbatim
137*> WI is DOUBLE PRECISION array, dimension (N)
138*>
139*> The real and imaginary parts, respectively, of the reordered
140*> eigenvalues of T. The eigenvalues are stored in the same
141*> order as on the diagonal of T, with WR(i) = T(i,i) and, if
142*> T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and
143*> WI(i+1) = -WI(i). Note that if a complex eigenvalue is
144*> sufficiently ill-conditioned, then its value may differ
145*> significantly from its value before reordering.
146*> \endverbatim
147*>
148*> \param[out] M
149*> \verbatim
150*> M is INTEGER
151*> The dimension of the specified invariant subspace.
152*> 0 < = M <= N.
153*> \endverbatim
154*>
155*> \param[out] S
156*> \verbatim
157*> S is DOUBLE PRECISION
158*> If JOB = 'E' or 'B', S is a lower bound on the reciprocal
159*> condition number for the selected cluster of eigenvalues.
160*> S cannot underestimate the true reciprocal condition number
161*> by more than a factor of sqrt(N). If M = 0 or N, S = 1.
162*> If JOB = 'N' or 'V', S is not referenced.
163*> \endverbatim
164*>
165*> \param[out] SEP
166*> \verbatim
167*> SEP is DOUBLE PRECISION
168*> If JOB = 'V' or 'B', SEP is the estimated reciprocal
169*> condition number of the specified invariant subspace. If
170*> M = 0 or N, SEP = norm(T).
171*> If JOB = 'N' or 'E', SEP is not referenced.
172*> \endverbatim
173*>
174*> \param[out] WORK
175*> \verbatim
176*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
177*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
178*> \endverbatim
179*>
180*> \param[in] LWORK
181*> \verbatim
182*> LWORK is INTEGER
183*> The dimension of the array WORK.
184*> If JOB = 'N', LWORK >= max(1,N);
185*> if JOB = 'E', LWORK >= max(1,M*(N-M));
186*> if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
187*>
188*> If LWORK = -1, then a workspace query is assumed; the routine
189*> only calculates the optimal size of the WORK array, returns
190*> this value as the first entry of the WORK array, and no error
191*> message related to LWORK is issued by XERBLA.
192*> \endverbatim
193*>
194*> \param[out] IWORK
195*> \verbatim
196*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
197*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
198*> \endverbatim
199*>
200*> \param[in] LIWORK
201*> \verbatim
202*> LIWORK is INTEGER
203*> The dimension of the array IWORK.
204*> If JOB = 'N' or 'E', LIWORK >= 1;
205*> if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
206*>
207*> If LIWORK = -1, then a workspace query is assumed; the
208*> routine only calculates the optimal size of the IWORK array,
209*> returns this value as the first entry of the IWORK array, and
210*> no error message related to LIWORK is issued by XERBLA.
211*> \endverbatim
212*>
213*> \param[out] INFO
214*> \verbatim
215*> INFO is INTEGER
216*> = 0: successful exit
217*> < 0: if INFO = -i, the i-th argument had an illegal value
218*> = 1: reordering of T failed because some eigenvalues are too
219*> close to separate (the problem is very ill-conditioned);
220*> T may have been partially reordered, and WR and WI
221*> contain the eigenvalues in the same order as in T; S and
222*> SEP (if requested) are set to zero.
223*> \endverbatim
224*
225* Authors:
226* ========
227*
228*> \author Univ. of Tennessee
229*> \author Univ. of California Berkeley
230*> \author Univ. of Colorado Denver
231*> \author NAG Ltd.
232*
233*> \ingroup trsen
234*
235*> \par Further Details:
236* =====================
237*>
238*> \verbatim
239*>
240*> DTRSEN first collects the selected eigenvalues by computing an
241*> orthogonal transformation Z to move them to the top left corner of T.
242*> In other words, the selected eigenvalues are the eigenvalues of T11
243*> in:
244*>
245*> Z**T * T * Z = ( T11 T12 ) n1
246*> ( 0 T22 ) n2
247*> n1 n2
248*>
249*> where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns
250*> of Z span the specified invariant subspace of T.
251*>
252*> If T has been obtained from the real Schur factorization of a matrix
253*> A = Q*T*Q**T, then the reordered real Schur factorization of A is given
254*> by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span
255*> the corresponding invariant subspace of A.
256*>
257*> The reciprocal condition number of the average of the eigenvalues of
258*> T11 may be returned in S. S lies between 0 (very badly conditioned)
259*> and 1 (very well conditioned). It is computed as follows. First we
260*> compute R so that
261*>
262*> P = ( I R ) n1
263*> ( 0 0 ) n2
264*> n1 n2
265*>
266*> is the projector on the invariant subspace associated with T11.
267*> R is the solution of the Sylvester equation:
268*>
269*> T11*R - R*T22 = T12.
270*>
271*> Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
272*> the two-norm of M. Then S is computed as the lower bound
273*>
274*> (1 + F-norm(R)**2)**(-1/2)
275*>
276*> on the reciprocal of 2-norm(P), the true reciprocal condition number.
277*> S cannot underestimate 1 / 2-norm(P) by more than a factor of
278*> sqrt(N).
279*>
280*> An approximate error bound for the computed average of the
281*> eigenvalues of T11 is
282*>
283*> EPS * norm(T) / S
284*>
285*> where EPS is the machine precision.
286*>
287*> The reciprocal condition number of the right invariant subspace
288*> spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
289*> SEP is defined as the separation of T11 and T22:
290*>
291*> sep( T11, T22 ) = sigma-min( C )
292*>
293*> where sigma-min(C) is the smallest singular value of the
294*> n1*n2-by-n1*n2 matrix
295*>
296*> C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
297*>
298*> I(m) is an m by m identity matrix, and kprod denotes the Kronecker
299*> product. We estimate sigma-min(C) by the reciprocal of an estimate of
300*> the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
301*> cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
302*>
303*> When SEP is small, small changes in T can cause large changes in
304*> the invariant subspace. An approximate bound on the maximum angular
305*> error in the computed right invariant subspace is
306*>
307*> EPS * norm(T) / SEP
308*> \endverbatim
309*>
310* =====================================================================
311 SUBROUTINE dtrsen( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
312 $ M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
313*
314* -- LAPACK computational routine --
315* -- LAPACK is a software package provided by Univ. of Tennessee, --
316* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
317*
318* .. Scalar Arguments ..
319 CHARACTER COMPQ, JOB
320 INTEGER INFO, LDQ, LDT, LIWORK, LWORK, M, N
321 DOUBLE PRECISION S, SEP
322* ..
323* .. Array Arguments ..
324 LOGICAL SELECT( * )
325 INTEGER IWORK( * )
326 DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
327 $ wr( * )
328* ..
329*
330* =====================================================================
331*
332* .. Parameters ..
333 DOUBLE PRECISION ZERO, ONE
334 parameter( zero = 0.0d+0, one = 1.0d+0 )
335* ..
336* .. Local Scalars ..
337 LOGICAL LQUERY, PAIR, SWAP, WANTBH, WANTQ, WANTS,
338 $ wantsp
339 INTEGER IERR, K, KASE, KK, KS, LIWMIN, LWMIN, N1, N2,
340 $ nn
341 DOUBLE PRECISION EST, RNORM, SCALE
342* ..
343* .. Local Arrays ..
344 INTEGER ISAVE( 3 )
345* ..
346* .. External Functions ..
347 LOGICAL LSAME
348 DOUBLE PRECISION DLANGE
349 EXTERNAL lsame, dlange
350* ..
351* .. External Subroutines ..
352 EXTERNAL dlacn2, dlacpy, dtrexc, dtrsyl, xerbla
353* ..
354* .. Intrinsic Functions ..
355 INTRINSIC abs, max, sqrt
356* ..
357* .. Executable Statements ..
358*
359* Decode and test the input parameters
360*
361 wantbh = lsame( job, 'B' )
362 wants = lsame( job, 'E' ) .OR. wantbh
363 wantsp = lsame( job, 'V' ) .OR. wantbh
364 wantq = lsame( compq, 'V' )
365*
366 info = 0
367 lquery = ( lwork.EQ.-1 )
368 IF( .NOT.lsame( job, 'N' ) .AND. .NOT.wants .AND. .NOT.wantsp )
369 $ THEN
370 info = -1
371 ELSE IF( .NOT.lsame( compq, 'N' ) .AND. .NOT.wantq ) THEN
372 info = -2
373 ELSE IF( n.LT.0 ) THEN
374 info = -4
375 ELSE IF( ldt.LT.max( 1, n ) ) THEN
376 info = -6
377 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
378 info = -8
379 ELSE
380*
381* Set M to the dimension of the specified invariant subspace,
382* and test LWORK and LIWORK.
383*
384 m = 0
385 pair = .false.
386 DO 10 k = 1, n
387 IF( pair ) THEN
388 pair = .false.
389 ELSE
390 IF( k.LT.n ) THEN
391 IF( t( k+1, k ).EQ.zero ) THEN
392 IF( SELECT( k ) )
393 $ m = m + 1
394 ELSE
395 pair = .true.
396 IF( SELECT( k ) .OR. SELECT( k+1 ) )
397 $ m = m + 2
398 END IF
399 ELSE
400 IF( SELECT( n ) )
401 $ m = m + 1
402 END IF
403 END IF
404 10 CONTINUE
405*
406 n1 = m
407 n2 = n - m
408 nn = n1*n2
409*
410 IF( wantsp ) THEN
411 lwmin = max( 1, 2*nn )
412 liwmin = max( 1, nn )
413 ELSE IF( lsame( job, 'N' ) ) THEN
414 lwmin = max( 1, n )
415 liwmin = 1
416 ELSE IF( lsame( job, 'E' ) ) THEN
417 lwmin = max( 1, nn )
418 liwmin = 1
419 END IF
420*
421 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
422 info = -15
423 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
424 info = -17
425 END IF
426 END IF
427*
428 IF( info.EQ.0 ) THEN
429 work( 1 ) = lwmin
430 iwork( 1 ) = liwmin
431 END IF
432*
433 IF( info.NE.0 ) THEN
434 CALL xerbla( 'DTRSEN', -info )
435 RETURN
436 ELSE IF( lquery ) THEN
437 RETURN
438 END IF
439*
440* Quick return if possible.
441*
442 IF( m.EQ.n .OR. m.EQ.0 ) THEN
443 IF( wants )
444 $ s = one
445 IF( wantsp )
446 $ sep = dlange( '1', n, n, t, ldt, work )
447 GO TO 40
448 END IF
449*
450* Collect the selected blocks at the top-left corner of T.
451*
452 ks = 0
453 pair = .false.
454 DO 20 k = 1, n
455 IF( pair ) THEN
456 pair = .false.
457 ELSE
458 swap = SELECT( k )
459 IF( k.LT.n ) THEN
460 IF( t( k+1, k ).NE.zero ) THEN
461 pair = .true.
462 swap = swap .OR. SELECT( k+1 )
463 END IF
464 END IF
465 IF( swap ) THEN
466 ks = ks + 1
467*
468* Swap the K-th block to position KS.
469*
470 ierr = 0
471 kk = k
472 IF( k.NE.ks )
473 $ CALL dtrexc( compq, n, t, ldt, q, ldq, kk, ks, work,
474 $ ierr )
475 IF( ierr.EQ.1 .OR. ierr.EQ.2 ) THEN
476*
477* Blocks too close to swap: exit.
478*
479 info = 1
480 IF( wants )
481 $ s = zero
482 IF( wantsp )
483 $ sep = zero
484 GO TO 40
485 END IF
486 IF( pair )
487 $ ks = ks + 1
488 END IF
489 END IF
490 20 CONTINUE
491*
492 IF( wants ) THEN
493*
494* Solve Sylvester equation for R:
495*
496* T11*R - R*T22 = scale*T12
497*
498 CALL dlacpy( 'F', n1, n2, t( 1, n1+1 ), ldt, work, n1 )
499 CALL dtrsyl( 'N', 'N', -1, n1, n2, t, ldt, t( n1+1, n1+1 ),
500 $ ldt, work, n1, scale, ierr )
501*
502* Estimate the reciprocal of the condition number of the cluster
503* of eigenvalues.
504*
505 rnorm = dlange( 'F', n1, n2, work, n1, work )
506 IF( rnorm.EQ.zero ) THEN
507 s = one
508 ELSE
509 s = scale / ( sqrt( scale*scale / rnorm+rnorm )*
510 $ sqrt( rnorm ) )
511 END IF
512 END IF
513*
514 IF( wantsp ) THEN
515*
516* Estimate sep(T11,T22).
517*
518 est = zero
519 kase = 0
520 30 CONTINUE
521 CALL dlacn2( nn, work( nn+1 ), work, iwork, est, kase, isave )
522 IF( kase.NE.0 ) THEN
523 IF( kase.EQ.1 ) THEN
524*
525* Solve T11*R - R*T22 = scale*X.
526*
527 CALL dtrsyl( 'N', 'N', -1, n1, n2, t, ldt,
528 $ t( n1+1, n1+1 ), ldt, work, n1, scale,
529 $ ierr )
530 ELSE
531*
532* Solve T11**T*R - R*T22**T = scale*X.
533*
534 CALL dtrsyl( 'T', 'T', -1, n1, n2, t, ldt,
535 $ t( n1+1, n1+1 ), ldt, work, n1, scale,
536 $ ierr )
537 END IF
538 GO TO 30
539 END IF
540*
541 sep = scale / est
542 END IF
543*
544 40 CONTINUE
545*
546* Store the output eigenvalues in WR and WI.
547*
548 DO 50 k = 1, n
549 wr( k ) = t( k, k )
550 wi( k ) = zero
551 50 CONTINUE
552 DO 60 k = 1, n - 1
553 IF( t( k+1, k ).NE.zero ) THEN
554 wi( k ) = sqrt( abs( t( k, k+1 ) ) )*
555 $ sqrt( abs( t( k+1, k ) ) )
556 wi( k+1 ) = -wi( k )
557 END IF
558 60 CONTINUE
559*
560 work( 1 ) = lwmin
561 iwork( 1 ) = liwmin
562*
563 RETURN
564*
565* End of DTRSEN
566*
567 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dlacn2(n, v, x, isgn, est, kase, isave)
DLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition dlacn2.f:136
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:103
subroutine dtrexc(compq, n, t, ldt, q, ldq, ifst, ilst, work, info)
DTREXC
Definition dtrexc.f:148
subroutine dtrsen(job, compq, select, n, t, ldt, q, ldq, wr, wi, m, s, sep, work, lwork, iwork, liwork, info)
DTRSEN
Definition dtrsen.f:313
subroutine dtrsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)
DTRSYL
Definition dtrsyl.f:164