119 SUBROUTINE clargv( N, X, INCX, Y, INCY, C, INCC )
126 INTEGER INCC, INCX, INCY, N
130 COMPLEX X( * ), Y( * )
137 parameter( two = 2.0e+0, one = 1.0e+0, zero = 0.0e+0 )
139 parameter( czero = ( 0.0e+0, 0.0e+0 ) )
143 INTEGER COUNT, I, IC, IX, IY, J
144 REAL CS, D, DI, DR, EPS, F2, F2S, G2, G2S, SAFMIN,
145 $ SAFMN2, SAFMX2, SCALE
146 COMPLEX F, FF, FS, G, GS, R, SN
150 EXTERNAL slamch, slapy2
153 INTRINSIC abs, aimag, cmplx, conjg, int, log, max, real,
166 abs1( ff ) = max( abs( real( ff ) ), abs( aimag( ff ) ) )
167 abssq( ff ) = real( ff )**2 + aimag( ff )**2
173 safmin = slamch(
'S' )
175 safmn2 = slamch(
'B' )**int( log( safmin / eps ) /
176 $ log( slamch(
'B' ) ) / two )
177 safmx2 = one / safmn2
188 scale = max( abs1( f ), abs1( g ) )
192 IF( scale.GE.safmx2 )
THEN
198 IF( scale.GE.safmx2 .AND. count .LT. 20 )
200 ELSE IF( scale.LE.safmn2 )
THEN
201 IF( g.EQ.czero )
THEN
212 IF( scale.LE.safmn2 )
217 IF( f2.LE.max( g2, one )*safmin )
THEN
221 IF( f.EQ.czero )
THEN
223 r = slapy2( real( g ), aimag( g ) )
226 d = slapy2( real( gs ), aimag( gs ) )
227 sn = cmplx( real( gs ) / d, -aimag( gs ) / d )
230 f2s = slapy2( real( fs ), aimag( fs ) )
244 IF( abs1( f ).GT.one )
THEN
245 d = slapy2( real( f ), aimag( f ) )
246 ff = cmplx( real( f ) / d, aimag( f ) / d )
248 dr = safmx2*real( f )
249 di = safmx2*aimag( f )
251 ff = cmplx( dr / d, di / d )
253 sn = ff*cmplx( real( gs ) / g2s, -aimag( gs ) / g2s )
261 f2s = sqrt( one+g2 / f2 )
264 r = cmplx( f2s*real( fs ), f2s*aimag( fs ) )
268 sn = cmplx( real( r ) / d, aimag( r ) / d )
270 IF( count.NE.0 )
THEN
271 IF( count.GT.0 )
THEN
subroutine clargv(n, x, incx, y, incy, c, incc)
CLARGV generates a vector of plane rotations with real cosines and complex sines.