LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dgerq2.f
Go to the documentation of this file.
1*> \brief \b DGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download DGERQ2 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgerq2.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgerq2.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgerq2.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE DGERQ2( M, N, A, LDA, TAU, WORK, INFO )
20*
21* .. Scalar Arguments ..
22* INTEGER INFO, LDA, M, N
23* ..
24* .. Array Arguments ..
25* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> DGERQ2 computes an RQ factorization of a real m by n matrix A:
35*> A = R * Q.
36*> \endverbatim
37*
38* Arguments:
39* ==========
40*
41*> \param[in] M
42*> \verbatim
43*> M is INTEGER
44*> The number of rows of the matrix A. M >= 0.
45*> \endverbatim
46*>
47*> \param[in] N
48*> \verbatim
49*> N is INTEGER
50*> The number of columns of the matrix A. N >= 0.
51*> \endverbatim
52*>
53*> \param[in,out] A
54*> \verbatim
55*> A is DOUBLE PRECISION array, dimension (LDA,N)
56*> On entry, the m by n matrix A.
57*> On exit, if m <= n, the upper triangle of the subarray
58*> A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
59*> if m >= n, the elements on and above the (m-n)-th subdiagonal
60*> contain the m by n upper trapezoidal matrix R; the remaining
61*> elements, with the array TAU, represent the orthogonal matrix
62*> Q as a product of elementary reflectors (see Further
63*> Details).
64*> \endverbatim
65*>
66*> \param[in] LDA
67*> \verbatim
68*> LDA is INTEGER
69*> The leading dimension of the array A. LDA >= max(1,M).
70*> \endverbatim
71*>
72*> \param[out] TAU
73*> \verbatim
74*> TAU is DOUBLE PRECISION array, dimension (min(M,N))
75*> The scalar factors of the elementary reflectors (see Further
76*> Details).
77*> \endverbatim
78*>
79*> \param[out] WORK
80*> \verbatim
81*> WORK is DOUBLE PRECISION array, dimension (M)
82*> \endverbatim
83*>
84*> \param[out] INFO
85*> \verbatim
86*> INFO is INTEGER
87*> = 0: successful exit
88*> < 0: if INFO = -i, the i-th argument had an illegal value
89*> \endverbatim
90*
91* Authors:
92* ========
93*
94*> \author Univ. of Tennessee
95*> \author Univ. of California Berkeley
96*> \author Univ. of Colorado Denver
97*> \author NAG Ltd.
98*
99*> \ingroup gerq2
100*
101*> \par Further Details:
102* =====================
103*>
104*> \verbatim
105*>
106*> The matrix Q is represented as a product of elementary reflectors
107*>
108*> Q = H(1) H(2) . . . H(k), where k = min(m,n).
109*>
110*> Each H(i) has the form
111*>
112*> H(i) = I - tau * v * v**T
113*>
114*> where tau is a real scalar, and v is a real vector with
115*> v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
116*> A(m-k+i,1:n-k+i-1), and tau in TAU(i).
117*> \endverbatim
118*>
119* =====================================================================
120 SUBROUTINE dgerq2( M, N, A, LDA, TAU, WORK, INFO )
121*
122* -- LAPACK computational routine --
123* -- LAPACK is a software package provided by Univ. of Tennessee, --
124* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
125*
126* .. Scalar Arguments ..
127 INTEGER INFO, LDA, M, N
128* ..
129* .. Array Arguments ..
130 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
131* ..
132*
133* =====================================================================
134*
135* .. Parameters ..
136 DOUBLE PRECISION ONE
137 parameter( one = 1.0d+0 )
138* ..
139* .. Local Scalars ..
140 INTEGER I, K
141* ..
142* .. External Subroutines ..
143 EXTERNAL dlarf1l, dlarfg, xerbla
144* ..
145* .. Intrinsic Functions ..
146 INTRINSIC max, min
147* ..
148* .. Executable Statements ..
149*
150* Test the input arguments
151*
152 info = 0
153 IF( m.LT.0 ) THEN
154 info = -1
155 ELSE IF( n.LT.0 ) THEN
156 info = -2
157 ELSE IF( lda.LT.max( 1, m ) ) THEN
158 info = -4
159 END IF
160 IF( info.NE.0 ) THEN
161 CALL xerbla( 'DGERQ2', -info )
162 RETURN
163 END IF
164*
165 k = min( m, n )
166*
167 DO 10 i = k, 1, -1
168*
169* Generate elementary reflector H(i) to annihilate
170* A(m-k+i,1:n-k+i-1)
171*
172 CALL dlarfg( n-k+i, a( m-k+i, n-k+i ), a( m-k+i, 1 ), lda,
173 $ tau( i ) )
174*
175* Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right
176*
177 CALL dlarf1l( 'Right', m-k+i-1, n-k+i, a( m-k+i, 1 ), lda,
178 $ tau( i ), a, lda, work )
179 10 CONTINUE
180 RETURN
181*
182* End of DGERQ2
183*
184 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dgerq2(m, n, a, lda, tau, work, info)
DGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
Definition dgerq2.f:121
subroutine dlarf1l(side, m, n, v, incv, tau, c, ldc, work)
DLARF1L applies an elementary reflector to a general rectangular
Definition dlarf1l.f:124
subroutine dlarfg(n, alpha, x, incx, tau)
DLARFG generates an elementary reflector (Householder matrix).
Definition dlarfg.f:104