LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
sggsvd3.f
Go to the documentation of this file.
1*> \brief <b> SGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices</b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SGGSVD3 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggsvd3.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggsvd3.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggsvd3.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE SGGSVD3( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
22* LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
23* LWORK, IWORK, INFO )
24*
25* .. Scalar Arguments ..
26* CHARACTER JOBQ, JOBU, JOBV
27* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK
28* ..
29* .. Array Arguments ..
30* INTEGER IWORK( * )
31* REAL A( LDA, * ), ALPHA( * ), B( LDB, * ),
32* $ BETA( * ), Q( LDQ, * ), U( LDU, * ),
33* $ V( LDV, * ), WORK( * )
34* ..
35*
36*
37*> \par Purpose:
38* =============
39*>
40*> \verbatim
41*>
42*> SGGSVD3 computes the generalized singular value decomposition (GSVD)
43*> of an M-by-N real matrix A and P-by-N real matrix B:
44*>
45*> U**T*A*Q = D1*( 0 R ), V**T*B*Q = D2*( 0 R )
46*>
47*> where U, V and Q are orthogonal matrices.
48*> Let K+L = the effective numerical rank of the matrix (A**T,B**T)**T,
49*> then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and
50*> D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the
51*> following structures, respectively:
52*>
53*> If M-K-L >= 0,
54*>
55*> K L
56*> D1 = K ( I 0 )
57*> L ( 0 C )
58*> M-K-L ( 0 0 )
59*>
60*> K L
61*> D2 = L ( 0 S )
62*> P-L ( 0 0 )
63*>
64*> N-K-L K L
65*> ( 0 R ) = K ( 0 R11 R12 )
66*> L ( 0 0 R22 )
67*>
68*> where
69*>
70*> C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
71*> S = diag( BETA(K+1), ... , BETA(K+L) ),
72*> C**2 + S**2 = I.
73*>
74*> R is stored in A(1:K+L,N-K-L+1:N) on exit.
75*>
76*> If M-K-L < 0,
77*>
78*> K M-K K+L-M
79*> D1 = K ( I 0 0 )
80*> M-K ( 0 C 0 )
81*>
82*> K M-K K+L-M
83*> D2 = M-K ( 0 S 0 )
84*> K+L-M ( 0 0 I )
85*> P-L ( 0 0 0 )
86*>
87*> N-K-L K M-K K+L-M
88*> ( 0 R ) = K ( 0 R11 R12 R13 )
89*> M-K ( 0 0 R22 R23 )
90*> K+L-M ( 0 0 0 R33 )
91*>
92*> where
93*>
94*> C = diag( ALPHA(K+1), ... , ALPHA(M) ),
95*> S = diag( BETA(K+1), ... , BETA(M) ),
96*> C**2 + S**2 = I.
97*>
98*> (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
99*> ( 0 R22 R23 )
100*> in B(M-K+1:L,N+M-K-L+1:N) on exit.
101*>
102*> The routine computes C, S, R, and optionally the orthogonal
103*> transformation matrices U, V and Q.
104*>
105*> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
106*> A and B implicitly gives the SVD of A*inv(B):
107*> A*inv(B) = U*(D1*inv(D2))*V**T.
108*> If ( A**T,B**T)**T has orthonormal columns, then the GSVD of A and B is
109*> also equal to the CS decomposition of A and B. Furthermore, the GSVD
110*> can be used to derive the solution of the eigenvalue problem:
111*> A**T*A x = lambda* B**T*B x.
112*> In some literature, the GSVD of A and B is presented in the form
113*> U**T*A*X = ( 0 D1 ), V**T*B*X = ( 0 D2 )
114*> where U and V are orthogonal and X is nonsingular, D1 and D2 are
115*> ``diagonal''. The former GSVD form can be converted to the latter
116*> form by taking the nonsingular matrix X as
117*>
118*> X = Q*( I 0 )
119*> ( 0 inv(R) ).
120*> \endverbatim
121*
122* Arguments:
123* ==========
124*
125*> \param[in] JOBU
126*> \verbatim
127*> JOBU is CHARACTER*1
128*> = 'U': Orthogonal matrix U is computed;
129*> = 'N': U is not computed.
130*> \endverbatim
131*>
132*> \param[in] JOBV
133*> \verbatim
134*> JOBV is CHARACTER*1
135*> = 'V': Orthogonal matrix V is computed;
136*> = 'N': V is not computed.
137*> \endverbatim
138*>
139*> \param[in] JOBQ
140*> \verbatim
141*> JOBQ is CHARACTER*1
142*> = 'Q': Orthogonal matrix Q is computed;
143*> = 'N': Q is not computed.
144*> \endverbatim
145*>
146*> \param[in] M
147*> \verbatim
148*> M is INTEGER
149*> The number of rows of the matrix A. M >= 0.
150*> \endverbatim
151*>
152*> \param[in] N
153*> \verbatim
154*> N is INTEGER
155*> The number of columns of the matrices A and B. N >= 0.
156*> \endverbatim
157*>
158*> \param[in] P
159*> \verbatim
160*> P is INTEGER
161*> The number of rows of the matrix B. P >= 0.
162*> \endverbatim
163*>
164*> \param[out] K
165*> \verbatim
166*> K is INTEGER
167*> \endverbatim
168*>
169*> \param[out] L
170*> \verbatim
171*> L is INTEGER
172*>
173*> On exit, K and L specify the dimension of the subblocks
174*> described in Purpose.
175*> K + L = effective numerical rank of (A**T,B**T)**T.
176*> \endverbatim
177*>
178*> \param[in,out] A
179*> \verbatim
180*> A is REAL array, dimension (LDA,N)
181*> On entry, the M-by-N matrix A.
182*> On exit, A contains the triangular matrix R, or part of R.
183*> See Purpose for details.
184*> \endverbatim
185*>
186*> \param[in] LDA
187*> \verbatim
188*> LDA is INTEGER
189*> The leading dimension of the array A. LDA >= max(1,M).
190*> \endverbatim
191*>
192*> \param[in,out] B
193*> \verbatim
194*> B is REAL array, dimension (LDB,N)
195*> On entry, the P-by-N matrix B.
196*> On exit, B contains the triangular matrix R if M-K-L < 0.
197*> See Purpose for details.
198*> \endverbatim
199*>
200*> \param[in] LDB
201*> \verbatim
202*> LDB is INTEGER
203*> The leading dimension of the array B. LDB >= max(1,P).
204*> \endverbatim
205*>
206*> \param[out] ALPHA
207*> \verbatim
208*> ALPHA is REAL array, dimension (N)
209*> \endverbatim
210*>
211*> \param[out] BETA
212*> \verbatim
213*> BETA is REAL array, dimension (N)
214*>
215*> On exit, ALPHA and BETA contain the generalized singular
216*> value pairs of A and B;
217*> ALPHA(1:K) = 1,
218*> BETA(1:K) = 0,
219*> and if M-K-L >= 0,
220*> ALPHA(K+1:K+L) = C,
221*> BETA(K+1:K+L) = S,
222*> or if M-K-L < 0,
223*> ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
224*> BETA(K+1:M) =S, BETA(M+1:K+L) =1
225*> and
226*> ALPHA(K+L+1:N) = 0
227*> BETA(K+L+1:N) = 0
228*> \endverbatim
229*>
230*> \param[out] U
231*> \verbatim
232*> U is REAL array, dimension (LDU,M)
233*> If JOBU = 'U', U contains the M-by-M orthogonal matrix U.
234*> If JOBU = 'N', U is not referenced.
235*> \endverbatim
236*>
237*> \param[in] LDU
238*> \verbatim
239*> LDU is INTEGER
240*> The leading dimension of the array U. LDU >= max(1,M) if
241*> JOBU = 'U'; LDU >= 1 otherwise.
242*> \endverbatim
243*>
244*> \param[out] V
245*> \verbatim
246*> V is REAL array, dimension (LDV,P)
247*> If JOBV = 'V', V contains the P-by-P orthogonal matrix V.
248*> If JOBV = 'N', V is not referenced.
249*> \endverbatim
250*>
251*> \param[in] LDV
252*> \verbatim
253*> LDV is INTEGER
254*> The leading dimension of the array V. LDV >= max(1,P) if
255*> JOBV = 'V'; LDV >= 1 otherwise.
256*> \endverbatim
257*>
258*> \param[out] Q
259*> \verbatim
260*> Q is REAL array, dimension (LDQ,N)
261*> If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.
262*> If JOBQ = 'N', Q is not referenced.
263*> \endverbatim
264*>
265*> \param[in] LDQ
266*> \verbatim
267*> LDQ is INTEGER
268*> The leading dimension of the array Q. LDQ >= max(1,N) if
269*> JOBQ = 'Q'; LDQ >= 1 otherwise.
270*> \endverbatim
271*>
272*> \param[out] WORK
273*> \verbatim
274*> WORK is REAL array, dimension (MAX(1,LWORK))
275*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
276*> \endverbatim
277*>
278*> \param[in] LWORK
279*> \verbatim
280*> LWORK is INTEGER
281*> The dimension of the array WORK.
282*>
283*> If LWORK = -1, then a workspace query is assumed; the routine
284*> only calculates the optimal size of the WORK array, returns
285*> this value as the first entry of the WORK array, and no error
286*> message related to LWORK is issued by XERBLA.
287*> \endverbatim
288*>
289*> \param[out] IWORK
290*> \verbatim
291*> IWORK is INTEGER array, dimension (N)
292*> On exit, IWORK stores the sorting information. More
293*> precisely, the following loop will sort ALPHA
294*> for I = K+1, min(M,K+L)
295*> swap ALPHA(I) and ALPHA(IWORK(I))
296*> endfor
297*> such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
298*> \endverbatim
299*>
300*> \param[out] INFO
301*> \verbatim
302*> INFO is INTEGER
303*> = 0: successful exit.
304*> < 0: if INFO = -i, the i-th argument had an illegal value.
305*> > 0: if INFO = 1, the Jacobi-type procedure failed to
306*> converge. For further details, see subroutine STGSJA.
307*> \endverbatim
308*
309*> \par Internal Parameters:
310* =========================
311*>
312*> \verbatim
313*> TOLA REAL
314*> TOLB REAL
315*> TOLA and TOLB are the thresholds to determine the effective
316*> rank of (A**T,B**T)**T. Generally, they are set to
317*> TOLA = MAX(M,N)*norm(A)*MACHEPS,
318*> TOLB = MAX(P,N)*norm(B)*MACHEPS.
319*> The size of TOLA and TOLB may affect the size of backward
320*> errors of the decomposition.
321*> \endverbatim
322*
323* Authors:
324* ========
325*
326*> \author Univ. of Tennessee
327*> \author Univ. of California Berkeley
328*> \author Univ. of Colorado Denver
329*> \author NAG Ltd.
330*
331*> \ingroup ggsvd3
332*
333*> \par Contributors:
334* ==================
335*>
336*> Ming Gu and Huan Ren, Computer Science Division, University of
337*> California at Berkeley, USA
338*>
339*
340*> \par Further Details:
341* =====================
342*>
343*> SGGSVD3 replaces the deprecated subroutine SGGSVD.
344*>
345* =====================================================================
346 SUBROUTINE sggsvd3( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
347 $ LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
348 $ WORK, LWORK, IWORK, INFO )
349*
350* -- LAPACK driver routine --
351* -- LAPACK is a software package provided by Univ. of Tennessee, --
352* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
353*
354* .. Scalar Arguments ..
355 CHARACTER JOBQ, JOBU, JOBV
356 INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P,
357 $ lwork
358* ..
359* .. Array Arguments ..
360 INTEGER IWORK( * )
361 REAL A( LDA, * ), ALPHA( * ), B( LDB, * ),
362 $ beta( * ), q( ldq, * ), u( ldu, * ),
363 $ v( ldv, * ), work( * )
364* ..
365*
366* =====================================================================
367*
368* .. Local Scalars ..
369 LOGICAL WANTQ, WANTU, WANTV, LQUERY
370 INTEGER I, IBND, ISUB, J, NCYCLE, LWKOPT
371 REAL ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
372* ..
373* .. External Functions ..
374 LOGICAL LSAME
375 REAL SLAMCH, SLANGE, SROUNDUP_LWORK
376 EXTERNAL lsame, slamch, slange, sroundup_lwork
377* ..
378* .. External Subroutines ..
379 EXTERNAL scopy, sggsvp3, stgsja, xerbla
380* ..
381* .. Intrinsic Functions ..
382 INTRINSIC max, min
383* ..
384* .. Executable Statements ..
385*
386* Decode and test the input parameters
387*
388 wantu = lsame( jobu, 'U' )
389 wantv = lsame( jobv, 'V' )
390 wantq = lsame( jobq, 'Q' )
391 lquery = ( lwork.EQ.-1 )
392 lwkopt = 1
393*
394* Test the input arguments
395*
396 info = 0
397 IF( .NOT.( wantu .OR. lsame( jobu, 'N' ) ) ) THEN
398 info = -1
399 ELSE IF( .NOT.( wantv .OR. lsame( jobv, 'N' ) ) ) THEN
400 info = -2
401 ELSE IF( .NOT.( wantq .OR. lsame( jobq, 'N' ) ) ) THEN
402 info = -3
403 ELSE IF( m.LT.0 ) THEN
404 info = -4
405 ELSE IF( n.LT.0 ) THEN
406 info = -5
407 ELSE IF( p.LT.0 ) THEN
408 info = -6
409 ELSE IF( lda.LT.max( 1, m ) ) THEN
410 info = -10
411 ELSE IF( ldb.LT.max( 1, p ) ) THEN
412 info = -12
413 ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
414 info = -16
415 ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
416 info = -18
417 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
418 info = -20
419 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
420 info = -24
421 END IF
422*
423* Compute workspace
424*
425 IF( info.EQ.0 ) THEN
426 CALL sggsvp3( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola,
427 $ tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, work,
428 $ work, -1, info )
429 lwkopt = n + int( work( 1 ) )
430 lwkopt = max( 2*n, lwkopt )
431 lwkopt = max( 1, lwkopt )
432 work( 1 ) = sroundup_lwork( lwkopt )
433 END IF
434*
435 IF( info.NE.0 ) THEN
436 CALL xerbla( 'SGGSVD3', -info )
437 RETURN
438 END IF
439 IF( lquery ) THEN
440 RETURN
441 ENDIF
442*
443* Compute the Frobenius norm of matrices A and B
444*
445 anorm = slange( '1', m, n, a, lda, work )
446 bnorm = slange( '1', p, n, b, ldb, work )
447*
448* Get machine precision and set up threshold for determining
449* the effective numerical rank of the matrices A and B.
450*
451 ulp = slamch( 'Precision' )
452 unfl = slamch( 'Safe Minimum' )
453 tola = max( m, n )*max( anorm, unfl )*ulp
454 tolb = max( p, n )*max( bnorm, unfl )*ulp
455*
456* Preprocessing
457*
458 CALL sggsvp3( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola,
459 $ tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, work,
460 $ work( n+1 ), lwork-n, info )
461*
462* Compute the GSVD of two upper "triangular" matrices
463*
464 CALL stgsja( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb,
465 $ tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq,
466 $ work, ncycle, info )
467*
468* Sort the singular values and store the pivot indices in IWORK
469* Copy ALPHA to WORK, then sort ALPHA in WORK
470*
471 CALL scopy( n, alpha, 1, work, 1 )
472 ibnd = min( l, m-k )
473 DO 20 i = 1, ibnd
474*
475* Scan for largest ALPHA(K+I)
476*
477 isub = i
478 smax = work( k+i )
479 DO 10 j = i + 1, ibnd
480 temp = work( k+j )
481 IF( temp.GT.smax ) THEN
482 isub = j
483 smax = temp
484 END IF
485 10 CONTINUE
486 IF( isub.NE.i ) THEN
487 work( k+isub ) = work( k+i )
488 work( k+i ) = smax
489 iwork( k+i ) = k + isub
490 ELSE
491 iwork( k+i ) = k + i
492 END IF
493 20 CONTINUE
494*
495 work( 1 ) = sroundup_lwork( lwkopt )
496 RETURN
497*
498* End of SGGSVD3
499*
500 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine sggsvd3(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u, ldu, v, ldv, q, ldq, work, lwork, iwork, info)
SGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices
Definition sggsvd3.f:349
subroutine sggsvp3(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, lwork, info)
SGGSVP3
Definition sggsvp3.f:272
subroutine stgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
STGSJA
Definition stgsja.f:378