LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
sggsvp3.f
Go to the documentation of this file.
1*> \brief \b SGGSVP3
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SGGSVP3 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggsvp3.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggsvp3.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggsvp3.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE SGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
22* TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
23* IWORK, TAU, WORK, LWORK, INFO )
24*
25* .. Scalar Arguments ..
26* CHARACTER JOBQ, JOBU, JOBV
27* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK
28* REAL TOLA, TOLB
29* ..
30* .. Array Arguments ..
31* INTEGER IWORK( * )
32* REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
33* $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
34* ..
35*
36*
37*> \par Purpose:
38* =============
39*>
40*> \verbatim
41*>
42*> SGGSVP3 computes orthogonal matrices U, V and Q such that
43*>
44*> N-K-L K L
45*> U**T*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0;
46*> L ( 0 0 A23 )
47*> M-K-L ( 0 0 0 )
48*>
49*> N-K-L K L
50*> = K ( 0 A12 A13 ) if M-K-L < 0;
51*> M-K ( 0 0 A23 )
52*>
53*> N-K-L K L
54*> V**T*B*Q = L ( 0 0 B13 )
55*> P-L ( 0 0 0 )
56*>
57*> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
58*> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
59*> otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
60*> numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T.
61*>
62*> This decomposition is the preprocessing step for computing the
63*> Generalized Singular Value Decomposition (GSVD), see subroutine
64*> SGGSVD3.
65*> \endverbatim
66*
67* Arguments:
68* ==========
69*
70*> \param[in] JOBU
71*> \verbatim
72*> JOBU is CHARACTER*1
73*> = 'U': Orthogonal matrix U is computed;
74*> = 'N': U is not computed.
75*> \endverbatim
76*>
77*> \param[in] JOBV
78*> \verbatim
79*> JOBV is CHARACTER*1
80*> = 'V': Orthogonal matrix V is computed;
81*> = 'N': V is not computed.
82*> \endverbatim
83*>
84*> \param[in] JOBQ
85*> \verbatim
86*> JOBQ is CHARACTER*1
87*> = 'Q': Orthogonal matrix Q is computed;
88*> = 'N': Q is not computed.
89*> \endverbatim
90*>
91*> \param[in] M
92*> \verbatim
93*> M is INTEGER
94*> The number of rows of the matrix A. M >= 0.
95*> \endverbatim
96*>
97*> \param[in] P
98*> \verbatim
99*> P is INTEGER
100*> The number of rows of the matrix B. P >= 0.
101*> \endverbatim
102*>
103*> \param[in] N
104*> \verbatim
105*> N is INTEGER
106*> The number of columns of the matrices A and B. N >= 0.
107*> \endverbatim
108*>
109*> \param[in,out] A
110*> \verbatim
111*> A is REAL array, dimension (LDA,N)
112*> On entry, the M-by-N matrix A.
113*> On exit, A contains the triangular (or trapezoidal) matrix
114*> described in the Purpose section.
115*> \endverbatim
116*>
117*> \param[in] LDA
118*> \verbatim
119*> LDA is INTEGER
120*> The leading dimension of the array A. LDA >= max(1,M).
121*> \endverbatim
122*>
123*> \param[in,out] B
124*> \verbatim
125*> B is REAL array, dimension (LDB,N)
126*> On entry, the P-by-N matrix B.
127*> On exit, B contains the triangular matrix described in
128*> the Purpose section.
129*> \endverbatim
130*>
131*> \param[in] LDB
132*> \verbatim
133*> LDB is INTEGER
134*> The leading dimension of the array B. LDB >= max(1,P).
135*> \endverbatim
136*>
137*> \param[in] TOLA
138*> \verbatim
139*> TOLA is REAL
140*> \endverbatim
141*>
142*> \param[in] TOLB
143*> \verbatim
144*> TOLB is REAL
145*>
146*> TOLA and TOLB are the thresholds to determine the effective
147*> numerical rank of matrix B and a subblock of A. Generally,
148*> they are set to
149*> TOLA = MAX(M,N)*norm(A)*MACHEPS,
150*> TOLB = MAX(P,N)*norm(B)*MACHEPS.
151*> The size of TOLA and TOLB may affect the size of backward
152*> errors of the decomposition.
153*> \endverbatim
154*>
155*> \param[out] K
156*> \verbatim
157*> K is INTEGER
158*> \endverbatim
159*>
160*> \param[out] L
161*> \verbatim
162*> L is INTEGER
163*>
164*> On exit, K and L specify the dimension of the subblocks
165*> described in Purpose section.
166*> K + L = effective numerical rank of (A**T,B**T)**T.
167*> \endverbatim
168*>
169*> \param[out] U
170*> \verbatim
171*> U is REAL array, dimension (LDU,M)
172*> If JOBU = 'U', U contains the orthogonal matrix U.
173*> If JOBU = 'N', U is not referenced.
174*> \endverbatim
175*>
176*> \param[in] LDU
177*> \verbatim
178*> LDU is INTEGER
179*> The leading dimension of the array U. LDU >= max(1,M) if
180*> JOBU = 'U'; LDU >= 1 otherwise.
181*> \endverbatim
182*>
183*> \param[out] V
184*> \verbatim
185*> V is REAL array, dimension (LDV,P)
186*> If JOBV = 'V', V contains the orthogonal matrix V.
187*> If JOBV = 'N', V is not referenced.
188*> \endverbatim
189*>
190*> \param[in] LDV
191*> \verbatim
192*> LDV is INTEGER
193*> The leading dimension of the array V. LDV >= max(1,P) if
194*> JOBV = 'V'; LDV >= 1 otherwise.
195*> \endverbatim
196*>
197*> \param[out] Q
198*> \verbatim
199*> Q is REAL array, dimension (LDQ,N)
200*> If JOBQ = 'Q', Q contains the orthogonal matrix Q.
201*> If JOBQ = 'N', Q is not referenced.
202*> \endverbatim
203*>
204*> \param[in] LDQ
205*> \verbatim
206*> LDQ is INTEGER
207*> The leading dimension of the array Q. LDQ >= max(1,N) if
208*> JOBQ = 'Q'; LDQ >= 1 otherwise.
209*> \endverbatim
210*>
211*> \param[out] IWORK
212*> \verbatim
213*> IWORK is INTEGER array, dimension (N)
214*> \endverbatim
215*>
216*> \param[out] TAU
217*> \verbatim
218*> TAU is REAL array, dimension (N)
219*> \endverbatim
220*>
221*> \param[out] WORK
222*> \verbatim
223*> WORK is REAL array, dimension (MAX(1,LWORK))
224*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
225*> \endverbatim
226*>
227*> \param[in] LWORK
228*> \verbatim
229*> LWORK is INTEGER
230*> The dimension of the array WORK.
231*>
232*> If LWORK = -1, then a workspace query is assumed; the routine
233*> only calculates the optimal size of the WORK array, returns
234*> this value as the first entry of the WORK array, and no error
235*> message related to LWORK is issued by XERBLA.
236*> \endverbatim
237*>
238*> \param[out] INFO
239*> \verbatim
240*> INFO is INTEGER
241*> = 0: successful exit
242*> < 0: if INFO = -i, the i-th argument had an illegal value.
243*> \endverbatim
244*
245* Authors:
246* ========
247*
248*> \author Univ. of Tennessee
249*> \author Univ. of California Berkeley
250*> \author Univ. of Colorado Denver
251*> \author NAG Ltd.
252*
253*> \ingroup ggsvp3
254*
255*> \par Further Details:
256* =====================
257*>
258*> \verbatim
259*>
260*> The subroutine uses LAPACK subroutine SGEQP3 for the QR factorization
261*> with column pivoting to detect the effective numerical rank of the
262*> a matrix. It may be replaced by a better rank determination strategy.
263*>
264*> SGGSVP3 replaces the deprecated subroutine SGGSVP.
265*>
266*> \endverbatim
267*>
268* =====================================================================
269 SUBROUTINE sggsvp3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
270 $ TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
271 $ IWORK, TAU, WORK, LWORK, INFO )
272*
273* -- LAPACK computational routine --
274* -- LAPACK is a software package provided by Univ. of Tennessee, --
275* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
276*
277 IMPLICIT NONE
278*
279* .. Scalar Arguments ..
280 CHARACTER JOBQ, JOBU, JOBV
281 INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P,
282 $ lwork
283 REAL TOLA, TOLB
284* ..
285* .. Array Arguments ..
286 INTEGER IWORK( * )
287 REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
288 $ tau( * ), u( ldu, * ), v( ldv, * ), work( * )
289* ..
290*
291* =====================================================================
292*
293* .. Parameters ..
294 REAL ZERO, ONE
295 PARAMETER ( ZERO = 0.0e+0, one = 1.0e+0 )
296* ..
297* .. Local Scalars ..
298 LOGICAL FORWRD, WANTQ, WANTU, WANTV, LQUERY
299 INTEGER I, J, LWKOPT
300* ..
301* .. External Functions ..
302 LOGICAL LSAME
303 REAL SROUNDUP_LWORK
304 EXTERNAL lsame, sroundup_lwork
305* ..
306* .. External Subroutines ..
307 EXTERNAL sgeqp3, sgeqr2, sgerq2, slacpy, slapmt,
309* ..
310* .. Intrinsic Functions ..
311 INTRINSIC abs, max, min
312* ..
313* .. Executable Statements ..
314*
315* Test the input parameters
316*
317 wantu = lsame( jobu, 'U' )
318 wantv = lsame( jobv, 'V' )
319 wantq = lsame( jobq, 'Q' )
320 forwrd = .true.
321 lquery = ( lwork.EQ.-1 )
322 lwkopt = 1
323*
324* Test the input arguments
325*
326 info = 0
327 IF( .NOT.( wantu .OR. lsame( jobu, 'N' ) ) ) THEN
328 info = -1
329 ELSE IF( .NOT.( wantv .OR. lsame( jobv, 'N' ) ) ) THEN
330 info = -2
331 ELSE IF( .NOT.( wantq .OR. lsame( jobq, 'N' ) ) ) THEN
332 info = -3
333 ELSE IF( m.LT.0 ) THEN
334 info = -4
335 ELSE IF( p.LT.0 ) THEN
336 info = -5
337 ELSE IF( n.LT.0 ) THEN
338 info = -6
339 ELSE IF( lda.LT.max( 1, m ) ) THEN
340 info = -8
341 ELSE IF( ldb.LT.max( 1, p ) ) THEN
342 info = -10
343 ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
344 info = -16
345 ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
346 info = -18
347 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
348 info = -20
349 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
350 info = -24
351 END IF
352*
353* Compute workspace
354*
355 IF( info.EQ.0 ) THEN
356 CALL sgeqp3( p, n, b, ldb, iwork, tau, work, -1, info )
357 lwkopt = int( work( 1 ) )
358 IF( wantv ) THEN
359 lwkopt = max( lwkopt, p )
360 END IF
361 lwkopt = max( lwkopt, min( n, p ) )
362 lwkopt = max( lwkopt, m )
363 IF( wantq ) THEN
364 lwkopt = max( lwkopt, n )
365 END IF
366 CALL sgeqp3( m, n, a, lda, iwork, tau, work, -1, info )
367 lwkopt = max( lwkopt, int( work( 1 ) ) )
368 lwkopt = max( 1, lwkopt )
369 work( 1 ) = sroundup_lwork( lwkopt )
370 END IF
371*
372 IF( info.NE.0 ) THEN
373 CALL xerbla( 'SGGSVP3', -info )
374 RETURN
375 END IF
376 IF( lquery ) THEN
377 RETURN
378 ENDIF
379*
380* QR with column pivoting of B: B*P = V*( S11 S12 )
381* ( 0 0 )
382*
383 DO 10 i = 1, n
384 iwork( i ) = 0
385 10 CONTINUE
386 CALL sgeqp3( p, n, b, ldb, iwork, tau, work, lwork, info )
387*
388* Update A := A*P
389*
390 CALL slapmt( forwrd, m, n, a, lda, iwork )
391*
392* Determine the effective rank of matrix B.
393*
394 l = 0
395 DO 20 i = 1, min( p, n )
396 IF( abs( b( i, i ) ).GT.tolb )
397 $ l = l + 1
398 20 CONTINUE
399*
400 IF( wantv ) THEN
401*
402* Copy the details of V, and form V.
403*
404 CALL slaset( 'Full', p, p, zero, zero, v, ldv )
405 IF( p.GT.1 )
406 $ CALL slacpy( 'Lower', p-1, n, b( 2, 1 ), ldb, v( 2, 1 ),
407 $ ldv )
408 CALL sorg2r( p, p, min( p, n ), v, ldv, tau, work, info )
409 END IF
410*
411* Clean up B
412*
413 DO 40 j = 1, l - 1
414 DO 30 i = j + 1, l
415 b( i, j ) = zero
416 30 CONTINUE
417 40 CONTINUE
418 IF( p.GT.l )
419 $ CALL slaset( 'Full', p-l, n, zero, zero, b( l+1, 1 ), ldb )
420*
421 IF( wantq ) THEN
422*
423* Set Q = I and Update Q := Q*P
424*
425 CALL slaset( 'Full', n, n, zero, one, q, ldq )
426 CALL slapmt( forwrd, n, n, q, ldq, iwork )
427 END IF
428*
429 IF( p.GE.l .AND. n.NE.l ) THEN
430*
431* RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z
432*
433 CALL sgerq2( l, n, b, ldb, tau, work, info )
434*
435* Update A := A*Z**T
436*
437 CALL sormr2( 'Right', 'Transpose', m, n, l, b, ldb, tau, a,
438 $ lda, work, info )
439*
440 IF( wantq ) THEN
441*
442* Update Q := Q*Z**T
443*
444 CALL sormr2( 'Right', 'Transpose', n, n, l, b, ldb, tau, q,
445 $ ldq, work, info )
446 END IF
447*
448* Clean up B
449*
450 CALL slaset( 'Full', l, n-l, zero, zero, b, ldb )
451 DO 60 j = n - l + 1, n
452 DO 50 i = j - n + l + 1, l
453 b( i, j ) = zero
454 50 CONTINUE
455 60 CONTINUE
456*
457 END IF
458*
459* Let N-L L
460* A = ( A11 A12 ) M,
461*
462* then the following does the complete QR decomposition of A11:
463*
464* A11 = U*( 0 T12 )*P1**T
465* ( 0 0 )
466*
467 DO 70 i = 1, n - l
468 iwork( i ) = 0
469 70 CONTINUE
470 CALL sgeqp3( m, n-l, a, lda, iwork, tau, work, lwork, info )
471*
472* Determine the effective rank of A11
473*
474 k = 0
475 DO 80 i = 1, min( m, n-l )
476 IF( abs( a( i, i ) ).GT.tola )
477 $ k = k + 1
478 80 CONTINUE
479*
480* Update A12 := U**T*A12, where A12 = A( 1:M, N-L+1:N )
481*
482 CALL sorm2r( 'Left', 'Transpose', m, l, min( m, n-l ), a, lda,
483 $ tau, a( 1, n-l+1 ), lda, work, info )
484*
485 IF( wantu ) THEN
486*
487* Copy the details of U, and form U
488*
489 CALL slaset( 'Full', m, m, zero, zero, u, ldu )
490 IF( m.GT.1 )
491 $ CALL slacpy( 'Lower', m-1, n-l, a( 2, 1 ), lda, u( 2, 1 ),
492 $ ldu )
493 CALL sorg2r( m, m, min( m, n-l ), u, ldu, tau, work, info )
494 END IF
495*
496 IF( wantq ) THEN
497*
498* Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1
499*
500 CALL slapmt( forwrd, n, n-l, q, ldq, iwork )
501 END IF
502*
503* Clean up A: set the strictly lower triangular part of
504* A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
505*
506 DO 100 j = 1, k - 1
507 DO 90 i = j + 1, k
508 a( i, j ) = zero
509 90 CONTINUE
510 100 CONTINUE
511 IF( m.GT.k )
512 $ CALL slaset( 'Full', m-k, n-l, zero, zero, a( k+1, 1 ), lda )
513*
514 IF( n-l.GT.k ) THEN
515*
516* RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
517*
518 CALL sgerq2( k, n-l, a, lda, tau, work, info )
519*
520 IF( wantq ) THEN
521*
522* Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**T
523*
524 CALL sormr2( 'Right', 'Transpose', n, n-l, k, a, lda, tau,
525 $ q, ldq, work, info )
526 END IF
527*
528* Clean up A
529*
530 CALL slaset( 'Full', k, n-l-k, zero, zero, a, lda )
531 DO 120 j = n - l - k + 1, n - l
532 DO 110 i = j - n + l + k + 1, k
533 a( i, j ) = zero
534 110 CONTINUE
535 120 CONTINUE
536*
537 END IF
538*
539 IF( m.GT.k ) THEN
540*
541* QR factorization of A( K+1:M,N-L+1:N )
542*
543 CALL sgeqr2( m-k, l, a( k+1, n-l+1 ), lda, tau, work, info )
544*
545 IF( wantu ) THEN
546*
547* Update U(:,K+1:M) := U(:,K+1:M)*U1
548*
549 CALL sorm2r( 'Right', 'No transpose', m, m-k, min( m-k, l ),
550 $ a( k+1, n-l+1 ), lda, tau, u( 1, k+1 ), ldu,
551 $ work, info )
552 END IF
553*
554* Clean up
555*
556 DO 140 j = n - l + 1, n
557 DO 130 i = j - n + k + l + 1, m
558 a( i, j ) = zero
559 130 CONTINUE
560 140 CONTINUE
561*
562 END IF
563*
564 work( 1 ) = sroundup_lwork( lwkopt )
565 RETURN
566*
567* End of SGGSVP3
568*
569 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgeqp3(m, n, a, lda, jpvt, tau, work, lwork, info)
SGEQP3
Definition sgeqp3.f:151
subroutine sgeqr2(m, n, a, lda, tau, work, info)
SGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
Definition sgeqr2.f:130
subroutine sgerq2(m, n, a, lda, tau, work, info)
SGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
Definition sgerq2.f:123
subroutine sggsvp3(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, lwork, info)
SGGSVP3
Definition sggsvp3.f:272
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:103
subroutine slapmt(forwrd, m, n, x, ldx, k)
SLAPMT performs a forward or backward permutation of the columns of a matrix.
Definition slapmt.f:104
subroutine slaset(uplo, m, n, alpha, beta, a, lda)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition slaset.f:110
subroutine sorg2r(m, n, k, a, lda, tau, work, info)
SORG2R generates all or part of the orthogonal matrix Q from a QR factorization determined by sgeqrf ...
Definition sorg2r.f:114
subroutine sorm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
SORM2R multiplies a general matrix by the orthogonal matrix from a QR factorization determined by sge...
Definition sorm2r.f:159
subroutine sormr2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
SORMR2 multiplies a general matrix by the orthogonal matrix from a RQ factorization determined by sge...
Definition sormr2.f:159