LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
sggsvp3.f
Go to the documentation of this file.
1*> \brief \b SGGSVP3
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download SGGSVP3 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggsvp3.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggsvp3.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggsvp3.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE SGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
20* TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
21* IWORK, TAU, WORK, LWORK, INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER JOBQ, JOBU, JOBV
25* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK
26* REAL TOLA, TOLB
27* ..
28* .. Array Arguments ..
29* INTEGER IWORK( * )
30* REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
31* $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
32* ..
33*
34*
35*> \par Purpose:
36* =============
37*>
38*> \verbatim
39*>
40*> SGGSVP3 computes orthogonal matrices U, V and Q such that
41*>
42*> N-K-L K L
43*> U**T*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0;
44*> L ( 0 0 A23 )
45*> M-K-L ( 0 0 0 )
46*>
47*> N-K-L K L
48*> = K ( 0 A12 A13 ) if M-K-L < 0;
49*> M-K ( 0 0 A23 )
50*>
51*> N-K-L K L
52*> V**T*B*Q = L ( 0 0 B13 )
53*> P-L ( 0 0 0 )
54*>
55*> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
56*> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
57*> otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
58*> numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T.
59*>
60*> This decomposition is the preprocessing step for computing the
61*> Generalized Singular Value Decomposition (GSVD), see subroutine
62*> SGGSVD3.
63*> \endverbatim
64*
65* Arguments:
66* ==========
67*
68*> \param[in] JOBU
69*> \verbatim
70*> JOBU is CHARACTER*1
71*> = 'U': Orthogonal matrix U is computed;
72*> = 'N': U is not computed.
73*> \endverbatim
74*>
75*> \param[in] JOBV
76*> \verbatim
77*> JOBV is CHARACTER*1
78*> = 'V': Orthogonal matrix V is computed;
79*> = 'N': V is not computed.
80*> \endverbatim
81*>
82*> \param[in] JOBQ
83*> \verbatim
84*> JOBQ is CHARACTER*1
85*> = 'Q': Orthogonal matrix Q is computed;
86*> = 'N': Q is not computed.
87*> \endverbatim
88*>
89*> \param[in] M
90*> \verbatim
91*> M is INTEGER
92*> The number of rows of the matrix A. M >= 0.
93*> \endverbatim
94*>
95*> \param[in] P
96*> \verbatim
97*> P is INTEGER
98*> The number of rows of the matrix B. P >= 0.
99*> \endverbatim
100*>
101*> \param[in] N
102*> \verbatim
103*> N is INTEGER
104*> The number of columns of the matrices A and B. N >= 0.
105*> \endverbatim
106*>
107*> \param[in,out] A
108*> \verbatim
109*> A is REAL array, dimension (LDA,N)
110*> On entry, the M-by-N matrix A.
111*> On exit, A contains the triangular (or trapezoidal) matrix
112*> described in the Purpose section.
113*> \endverbatim
114*>
115*> \param[in] LDA
116*> \verbatim
117*> LDA is INTEGER
118*> The leading dimension of the array A. LDA >= max(1,M).
119*> \endverbatim
120*>
121*> \param[in,out] B
122*> \verbatim
123*> B is REAL array, dimension (LDB,N)
124*> On entry, the P-by-N matrix B.
125*> On exit, B contains the triangular matrix described in
126*> the Purpose section.
127*> \endverbatim
128*>
129*> \param[in] LDB
130*> \verbatim
131*> LDB is INTEGER
132*> The leading dimension of the array B. LDB >= max(1,P).
133*> \endverbatim
134*>
135*> \param[in] TOLA
136*> \verbatim
137*> TOLA is REAL
138*> \endverbatim
139*>
140*> \param[in] TOLB
141*> \verbatim
142*> TOLB is REAL
143*>
144*> TOLA and TOLB are the thresholds to determine the effective
145*> numerical rank of matrix B and a subblock of A. Generally,
146*> they are set to
147*> TOLA = MAX(M,N)*norm(A)*MACHEPS,
148*> TOLB = MAX(P,N)*norm(B)*MACHEPS.
149*> The size of TOLA and TOLB may affect the size of backward
150*> errors of the decomposition.
151*> \endverbatim
152*>
153*> \param[out] K
154*> \verbatim
155*> K is INTEGER
156*> \endverbatim
157*>
158*> \param[out] L
159*> \verbatim
160*> L is INTEGER
161*>
162*> On exit, K and L specify the dimension of the subblocks
163*> described in Purpose section.
164*> K + L = effective numerical rank of (A**T,B**T)**T.
165*> \endverbatim
166*>
167*> \param[out] U
168*> \verbatim
169*> U is REAL array, dimension (LDU,M)
170*> If JOBU = 'U', U contains the orthogonal matrix U.
171*> If JOBU = 'N', U is not referenced.
172*> \endverbatim
173*>
174*> \param[in] LDU
175*> \verbatim
176*> LDU is INTEGER
177*> The leading dimension of the array U. LDU >= max(1,M) if
178*> JOBU = 'U'; LDU >= 1 otherwise.
179*> \endverbatim
180*>
181*> \param[out] V
182*> \verbatim
183*> V is REAL array, dimension (LDV,P)
184*> If JOBV = 'V', V contains the orthogonal matrix V.
185*> If JOBV = 'N', V is not referenced.
186*> \endverbatim
187*>
188*> \param[in] LDV
189*> \verbatim
190*> LDV is INTEGER
191*> The leading dimension of the array V. LDV >= max(1,P) if
192*> JOBV = 'V'; LDV >= 1 otherwise.
193*> \endverbatim
194*>
195*> \param[out] Q
196*> \verbatim
197*> Q is REAL array, dimension (LDQ,N)
198*> If JOBQ = 'Q', Q contains the orthogonal matrix Q.
199*> If JOBQ = 'N', Q is not referenced.
200*> \endverbatim
201*>
202*> \param[in] LDQ
203*> \verbatim
204*> LDQ is INTEGER
205*> The leading dimension of the array Q. LDQ >= max(1,N) if
206*> JOBQ = 'Q'; LDQ >= 1 otherwise.
207*> \endverbatim
208*>
209*> \param[out] IWORK
210*> \verbatim
211*> IWORK is INTEGER array, dimension (N)
212*> \endverbatim
213*>
214*> \param[out] TAU
215*> \verbatim
216*> TAU is REAL array, dimension (N)
217*> \endverbatim
218*>
219*> \param[out] WORK
220*> \verbatim
221*> WORK is REAL array, dimension (MAX(1,LWORK))
222*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
223*> \endverbatim
224*>
225*> \param[in] LWORK
226*> \verbatim
227*> LWORK is INTEGER
228*> The dimension of the array WORK. LWORK >= 1.
229*>
230*> If LWORK = -1, then a workspace query is assumed; the routine
231*> only calculates the optimal size of the WORK array, returns
232*> this value as the first entry of the WORK array, and no error
233*> message related to LWORK is issued by XERBLA.
234*> \endverbatim
235*>
236*> \param[out] INFO
237*> \verbatim
238*> INFO is INTEGER
239*> = 0: successful exit
240*> < 0: if INFO = -i, the i-th argument had an illegal value.
241*> \endverbatim
242*
243* Authors:
244* ========
245*
246*> \author Univ. of Tennessee
247*> \author Univ. of California Berkeley
248*> \author Univ. of Colorado Denver
249*> \author NAG Ltd.
250*
251*> \ingroup ggsvp3
252*
253*> \par Further Details:
254* =====================
255*>
256*> \verbatim
257*>
258*> The subroutine uses LAPACK subroutine SGEQP3 for the QR factorization
259*> with column pivoting to detect the effective numerical rank of the
260*> a matrix. It may be replaced by a better rank determination strategy.
261*>
262*> SGGSVP3 replaces the deprecated subroutine SGGSVP.
263*>
264*> \endverbatim
265*>
266* =====================================================================
267 SUBROUTINE sggsvp3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
268 $ TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
269 $ IWORK, TAU, WORK, LWORK, INFO )
270*
271* -- LAPACK computational routine --
272* -- LAPACK is a software package provided by Univ. of Tennessee, --
273* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
274*
275 IMPLICIT NONE
276*
277* .. Scalar Arguments ..
278 CHARACTER JOBQ, JOBU, JOBV
279 INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P,
280 $ lwork
281 REAL TOLA, TOLB
282* ..
283* .. Array Arguments ..
284 INTEGER IWORK( * )
285 REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
286 $ tau( * ), u( ldu, * ), v( ldv, * ), work( * )
287* ..
288*
289* =====================================================================
290*
291* .. Parameters ..
292 REAL ZERO, ONE
293 PARAMETER ( ZERO = 0.0e+0, one = 1.0e+0 )
294* ..
295* .. Local Scalars ..
296 LOGICAL FORWRD, WANTQ, WANTU, WANTV, LQUERY
297 INTEGER I, J, LWKOPT
298* ..
299* .. External Functions ..
300 LOGICAL LSAME
301 EXTERNAL LSAME
302 REAL SROUNDUP_LWORK
303 EXTERNAL sroundup_lwork
304* ..
305* .. External Subroutines ..
306 EXTERNAL sgeqp3, sgeqr2, sgerq2, slacpy,
307 $ slapmt,
309* ..
310* .. Intrinsic Functions ..
311 INTRINSIC abs, max, min
312* ..
313* .. Executable Statements ..
314*
315* Test the input parameters
316*
317 wantu = lsame( jobu, 'U' )
318 wantv = lsame( jobv, 'V' )
319 wantq = lsame( jobq, 'Q' )
320 forwrd = .true.
321 lquery = ( lwork.EQ.-1 )
322 lwkopt = 1
323*
324* Test the input arguments
325*
326 info = 0
327 IF( .NOT.( wantu .OR. lsame( jobu, 'N' ) ) ) THEN
328 info = -1
329 ELSE IF( .NOT.( wantv .OR. lsame( jobv, 'N' ) ) ) THEN
330 info = -2
331 ELSE IF( .NOT.( wantq .OR. lsame( jobq, 'N' ) ) ) THEN
332 info = -3
333 ELSE IF( m.LT.0 ) THEN
334 info = -4
335 ELSE IF( p.LT.0 ) THEN
336 info = -5
337 ELSE IF( n.LT.0 ) THEN
338 info = -6
339 ELSE IF( lda.LT.max( 1, m ) ) THEN
340 info = -8
341 ELSE IF( ldb.LT.max( 1, p ) ) THEN
342 info = -10
343 ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
344 info = -16
345 ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
346 info = -18
347 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
348 info = -20
349 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
350 info = -24
351 END IF
352*
353* Compute workspace
354*
355 IF( info.EQ.0 ) THEN
356 CALL sgeqp3( p, n, b, ldb, iwork, tau, work, -1, info )
357 lwkopt = int( work( 1 ) )
358 IF( wantv ) THEN
359 lwkopt = max( lwkopt, p )
360 END IF
361 lwkopt = max( lwkopt, min( n, p ) )
362 lwkopt = max( lwkopt, m )
363 IF( wantq ) THEN
364 lwkopt = max( lwkopt, n )
365 END IF
366 CALL sgeqp3( m, n, a, lda, iwork, tau, work, -1, info )
367 lwkopt = max( lwkopt, int( work( 1 ) ) )
368 lwkopt = max( 1, lwkopt )
369 work( 1 ) = sroundup_lwork( lwkopt )
370 END IF
371*
372 IF( info.NE.0 ) THEN
373 CALL xerbla( 'SGGSVP3', -info )
374 RETURN
375 END IF
376 IF( lquery ) THEN
377 RETURN
378 ENDIF
379*
380* QR with column pivoting of B: B*P = V*( S11 S12 )
381* ( 0 0 )
382*
383 DO 10 i = 1, n
384 iwork( i ) = 0
385 10 CONTINUE
386 CALL sgeqp3( p, n, b, ldb, iwork, tau, work, lwork, info )
387*
388* Update A := A*P
389*
390 CALL slapmt( forwrd, m, n, a, lda, iwork )
391*
392* Determine the effective rank of matrix B.
393*
394 l = 0
395 DO 20 i = 1, min( p, n )
396 IF( abs( b( i, i ) ).GT.tolb )
397 $ l = l + 1
398 20 CONTINUE
399*
400 IF( wantv ) THEN
401*
402* Copy the details of V, and form V.
403*
404 CALL slaset( 'Full', p, p, zero, zero, v, ldv )
405 IF( p.GT.1 )
406 $ CALL slacpy( 'Lower', p-1, n, b( 2, 1 ), ldb, v( 2, 1 ),
407 $ ldv )
408 CALL sorg2r( p, p, min( p, n ), v, ldv, tau, work, info )
409 END IF
410*
411* Clean up B
412*
413 DO 40 j = 1, l - 1
414 DO 30 i = j + 1, l
415 b( i, j ) = zero
416 30 CONTINUE
417 40 CONTINUE
418 IF( p.GT.l )
419 $ CALL slaset( 'Full', p-l, n, zero, zero, b( l+1, 1 ), ldb )
420*
421 IF( wantq ) THEN
422*
423* Set Q = I and Update Q := Q*P
424*
425 CALL slaset( 'Full', n, n, zero, one, q, ldq )
426 CALL slapmt( forwrd, n, n, q, ldq, iwork )
427 END IF
428*
429 IF( p.GE.l .AND. n.NE.l ) THEN
430*
431* RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z
432*
433 CALL sgerq2( l, n, b, ldb, tau, work, info )
434*
435* Update A := A*Z**T
436*
437 CALL sormr2( 'Right', 'Transpose', m, n, l, b, ldb, tau, a,
438 $ lda, work, info )
439*
440 IF( wantq ) THEN
441*
442* Update Q := Q*Z**T
443*
444 CALL sormr2( 'Right', 'Transpose', n, n, l, b, ldb, tau,
445 $ q,
446 $ ldq, work, info )
447 END IF
448*
449* Clean up B
450*
451 CALL slaset( 'Full', l, n-l, zero, zero, b, ldb )
452 DO 60 j = n - l + 1, n
453 DO 50 i = j - n + l + 1, l
454 b( i, j ) = zero
455 50 CONTINUE
456 60 CONTINUE
457*
458 END IF
459*
460* Let N-L L
461* A = ( A11 A12 ) M,
462*
463* then the following does the complete QR decomposition of A11:
464*
465* A11 = U*( 0 T12 )*P1**T
466* ( 0 0 )
467*
468 DO 70 i = 1, n - l
469 iwork( i ) = 0
470 70 CONTINUE
471 CALL sgeqp3( m, n-l, a, lda, iwork, tau, work, lwork, info )
472*
473* Determine the effective rank of A11
474*
475 k = 0
476 DO 80 i = 1, min( m, n-l )
477 IF( abs( a( i, i ) ).GT.tola )
478 $ k = k + 1
479 80 CONTINUE
480*
481* Update A12 := U**T*A12, where A12 = A( 1:M, N-L+1:N )
482*
483 CALL sorm2r( 'Left', 'Transpose', m, l, min( m, n-l ), a, lda,
484 $ tau, a( 1, n-l+1 ), lda, work, info )
485*
486 IF( wantu ) THEN
487*
488* Copy the details of U, and form U
489*
490 CALL slaset( 'Full', m, m, zero, zero, u, ldu )
491 IF( m.GT.1 )
492 $ CALL slacpy( 'Lower', m-1, n-l, a( 2, 1 ), lda, u( 2,
493 $ 1 ),
494 $ ldu )
495 CALL sorg2r( m, m, min( m, n-l ), u, ldu, tau, work, info )
496 END IF
497*
498 IF( wantq ) THEN
499*
500* Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1
501*
502 CALL slapmt( forwrd, n, n-l, q, ldq, iwork )
503 END IF
504*
505* Clean up A: set the strictly lower triangular part of
506* A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
507*
508 DO 100 j = 1, k - 1
509 DO 90 i = j + 1, k
510 a( i, j ) = zero
511 90 CONTINUE
512 100 CONTINUE
513 IF( m.GT.k )
514 $ CALL slaset( 'Full', m-k, n-l, zero, zero, a( k+1, 1 ),
515 $ lda )
516*
517 IF( n-l.GT.k ) THEN
518*
519* RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
520*
521 CALL sgerq2( k, n-l, a, lda, tau, work, info )
522*
523 IF( wantq ) THEN
524*
525* Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**T
526*
527 CALL sormr2( 'Right', 'Transpose', n, n-l, k, a, lda,
528 $ tau,
529 $ q, ldq, work, info )
530 END IF
531*
532* Clean up A
533*
534 CALL slaset( 'Full', k, n-l-k, zero, zero, a, lda )
535 DO 120 j = n - l - k + 1, n - l
536 DO 110 i = j - n + l + k + 1, k
537 a( i, j ) = zero
538 110 CONTINUE
539 120 CONTINUE
540*
541 END IF
542*
543 IF( m.GT.k ) THEN
544*
545* QR factorization of A( K+1:M,N-L+1:N )
546*
547 CALL sgeqr2( m-k, l, a( k+1, n-l+1 ), lda, tau, work, info )
548*
549 IF( wantu ) THEN
550*
551* Update U(:,K+1:M) := U(:,K+1:M)*U1
552*
553 CALL sorm2r( 'Right', 'No transpose', m, m-k, min( m-k,
554 $ l ),
555 $ a( k+1, n-l+1 ), lda, tau, u( 1, k+1 ), ldu,
556 $ work, info )
557 END IF
558*
559* Clean up
560*
561 DO 140 j = n - l + 1, n
562 DO 130 i = j - n + k + l + 1, m
563 a( i, j ) = zero
564 130 CONTINUE
565 140 CONTINUE
566*
567 END IF
568*
569 work( 1 ) = sroundup_lwork( lwkopt )
570 RETURN
571*
572* End of SGGSVP3
573*
574 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgeqp3(m, n, a, lda, jpvt, tau, work, lwork, info)
SGEQP3
Definition sgeqp3.f:149
subroutine sgeqr2(m, n, a, lda, tau, work, info)
SGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
Definition sgeqr2.f:128
subroutine sgerq2(m, n, a, lda, tau, work, info)
SGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
Definition sgerq2.f:121
subroutine sggsvp3(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, lwork, info)
SGGSVP3
Definition sggsvp3.f:270
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:101
subroutine slapmt(forwrd, m, n, x, ldx, k)
SLAPMT performs a forward or backward permutation of the columns of a matrix.
Definition slapmt.f:102
subroutine slaset(uplo, m, n, alpha, beta, a, lda)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition slaset.f:108
subroutine sorg2r(m, n, k, a, lda, tau, work, info)
SORG2R generates all or part of the orthogonal matrix Q from a QR factorization determined by sgeqrf ...
Definition sorg2r.f:112
subroutine sorm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
SORM2R multiplies a general matrix by the orthogonal matrix from a QR factorization determined by sge...
Definition sorm2r.f:157
subroutine sormr2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
SORMR2 multiplies a general matrix by the orthogonal matrix from a RQ factorization determined by sge...
Definition sormr2.f:157