LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine sggsvp3 | ( | character | jobu, |
character | jobv, | ||
character | jobq, | ||
integer | m, | ||
integer | p, | ||
integer | n, | ||
real, dimension( lda, * ) | a, | ||
integer | lda, | ||
real, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
real | tola, | ||
real | tolb, | ||
integer | k, | ||
integer | l, | ||
real, dimension( ldu, * ) | u, | ||
integer | ldu, | ||
real, dimension( ldv, * ) | v, | ||
integer | ldv, | ||
real, dimension( ldq, * ) | q, | ||
integer | ldq, | ||
integer, dimension( * ) | iwork, | ||
real, dimension( * ) | tau, | ||
real, dimension( * ) | work, | ||
integer | lwork, | ||
integer | info ) |
SGGSVP3
Download SGGSVP3 + dependencies [TGZ] [ZIP] [TXT]
!> !> SGGSVP3 computes orthogonal matrices U, V and Q such that !> !> N-K-L K L !> U**T*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; !> L ( 0 0 A23 ) !> M-K-L ( 0 0 0 ) !> !> N-K-L K L !> = K ( 0 A12 A13 ) if M-K-L < 0; !> M-K ( 0 0 A23 ) !> !> N-K-L K L !> V**T*B*Q = L ( 0 0 B13 ) !> P-L ( 0 0 0 ) !> !> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular !> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, !> otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective !> numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T. !> !> This decomposition is the preprocessing step for computing the !> Generalized Singular Value Decomposition (GSVD), see subroutine !> SGGSVD3. !>
[in] | JOBU | !> JOBU is CHARACTER*1 !> = 'U': Orthogonal matrix U is computed; !> = 'N': U is not computed. !> |
[in] | JOBV | !> JOBV is CHARACTER*1 !> = 'V': Orthogonal matrix V is computed; !> = 'N': V is not computed. !> |
[in] | JOBQ | !> JOBQ is CHARACTER*1 !> = 'Q': Orthogonal matrix Q is computed; !> = 'N': Q is not computed. !> |
[in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
[in] | P | !> P is INTEGER !> The number of rows of the matrix B. P >= 0. !> |
[in] | N | !> N is INTEGER !> The number of columns of the matrices A and B. N >= 0. !> |
[in,out] | A | !> A is REAL array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, A contains the triangular (or trapezoidal) matrix !> described in the Purpose section. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
[in,out] | B | !> B is REAL array, dimension (LDB,N) !> On entry, the P-by-N matrix B. !> On exit, B contains the triangular matrix described in !> the Purpose section. !> |
[in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,P). !> |
[in] | TOLA | !> TOLA is REAL !> |
[in] | TOLB | !> TOLB is REAL !> !> TOLA and TOLB are the thresholds to determine the effective !> numerical rank of matrix B and a subblock of A. Generally, !> they are set to !> TOLA = MAX(M,N)*norm(A)*MACHEPS, !> TOLB = MAX(P,N)*norm(B)*MACHEPS. !> The size of TOLA and TOLB may affect the size of backward !> errors of the decomposition. !> |
[out] | K | !> K is INTEGER !> |
[out] | L | !> L is INTEGER !> !> On exit, K and L specify the dimension of the subblocks !> described in Purpose section. !> K + L = effective numerical rank of (A**T,B**T)**T. !> |
[out] | U | !> U is REAL array, dimension (LDU,M) !> If JOBU = 'U', U contains the orthogonal matrix U. !> If JOBU = 'N', U is not referenced. !> |
[in] | LDU | !> LDU is INTEGER !> The leading dimension of the array U. LDU >= max(1,M) if !> JOBU = 'U'; LDU >= 1 otherwise. !> |
[out] | V | !> V is REAL array, dimension (LDV,P) !> If JOBV = 'V', V contains the orthogonal matrix V. !> If JOBV = 'N', V is not referenced. !> |
[in] | LDV | !> LDV is INTEGER !> The leading dimension of the array V. LDV >= max(1,P) if !> JOBV = 'V'; LDV >= 1 otherwise. !> |
[out] | Q | !> Q is REAL array, dimension (LDQ,N) !> If JOBQ = 'Q', Q contains the orthogonal matrix Q. !> If JOBQ = 'N', Q is not referenced. !> |
[in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,N) if !> JOBQ = 'Q'; LDQ >= 1 otherwise. !> |
[out] | IWORK | !> IWORK is INTEGER array, dimension (N) !> |
[out] | TAU | !> TAU is REAL array, dimension (N) !> |
[out] | WORK | !> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
[in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= 1. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> |
!> !> The subroutine uses LAPACK subroutine SGEQP3 for the QR factorization !> with column pivoting to detect the effective numerical rank of the !> a matrix. It may be replaced by a better rank determination strategy. !> !> SGGSVP3 replaces the deprecated subroutine SGGSVP. !> !>
Definition at line 267 of file sggsvp3.f.