LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ sorm2r()

subroutine sorm2r ( character side,
character trans,
integer m,
integer n,
integer k,
real, dimension( lda, * ) a,
integer lda,
real, dimension( * ) tau,
real, dimension( ldc, * ) c,
integer ldc,
real, dimension( * ) work,
integer info )

SORM2R multiplies a general matrix by the orthogonal matrix from a QR factorization determined by sgeqrf (unblocked algorithm).

Download SORM2R + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> SORM2R overwrites the general real m by n matrix C with !> !> Q * C if SIDE = 'L' and TRANS = 'N', or !> !> Q**T* C if SIDE = 'L' and TRANS = 'T', or !> !> C * Q if SIDE = 'R' and TRANS = 'N', or !> !> C * Q**T if SIDE = 'R' and TRANS = 'T', !> !> where Q is a real orthogonal matrix defined as the product of k !> elementary reflectors !> !> Q = H(1) H(2) . . . H(k) !> !> as returned by SGEQRF. Q is of order m if SIDE = 'L' and of order n !> if SIDE = 'R'. !>
Parameters
[in]SIDE
!> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**T from the Left !> = 'R': apply Q or Q**T from the Right !>
[in]TRANS
!> TRANS is CHARACTER*1 !> = 'N': apply Q (No transpose) !> = 'T': apply Q**T (Transpose) !>
[in]M
!> M is INTEGER !> The number of rows of the matrix C. M >= 0. !>
[in]N
!> N is INTEGER !> The number of columns of the matrix C. N >= 0. !>
[in]K
!> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !>
[in]A
!> A is REAL array, dimension (LDA,K) !> The i-th column must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> SGEQRF in the first k columns of its array argument A. !> A is modified by the routine but restored on exit. !>
[in]LDA
!> LDA is INTEGER !> The leading dimension of the array A. !> If SIDE = 'L', LDA >= max(1,M); !> if SIDE = 'R', LDA >= max(1,N). !>
[in]TAU
!> TAU is REAL array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by SGEQRF. !>
[in,out]C
!> C is REAL array, dimension (LDC,N) !> On entry, the m by n matrix C. !> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. !>
[in]LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !>
[out]WORK
!> WORK is REAL array, dimension !> (N) if SIDE = 'L', !> (M) if SIDE = 'R' !>
[out]INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 155 of file sorm2r.f.

157*
158* -- LAPACK computational routine --
159* -- LAPACK is a software package provided by Univ. of Tennessee, --
160* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
161*
162* .. Scalar Arguments ..
163 CHARACTER SIDE, TRANS
164 INTEGER INFO, K, LDA, LDC, M, N
165* ..
166* .. Array Arguments ..
167 REAL A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
168* ..
169*
170* =====================================================================
171*
172* .. Local Scalars ..
173 LOGICAL LEFT, NOTRAN
174 INTEGER I, I1, I2, I3, IC, JC, MI, NI, NQ
175* ..
176* .. External Functions ..
177 LOGICAL LSAME
178 EXTERNAL lsame
179* ..
180* .. External Subroutines ..
181 EXTERNAL slarf1f, xerbla
182* ..
183* .. Intrinsic Functions ..
184 INTRINSIC max
185* ..
186* .. Executable Statements ..
187*
188* Test the input arguments
189*
190 info = 0
191 left = lsame( side, 'L' )
192 notran = lsame( trans, 'N' )
193*
194* NQ is the order of Q
195*
196 IF( left ) THEN
197 nq = m
198 ELSE
199 nq = n
200 END IF
201 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
202 info = -1
203 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) ) THEN
204 info = -2
205 ELSE IF( m.LT.0 ) THEN
206 info = -3
207 ELSE IF( n.LT.0 ) THEN
208 info = -4
209 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
210 info = -5
211 ELSE IF( lda.LT.max( 1, nq ) ) THEN
212 info = -7
213 ELSE IF( ldc.LT.max( 1, m ) ) THEN
214 info = -10
215 END IF
216 IF( info.NE.0 ) THEN
217 CALL xerbla( 'SORM2R', -info )
218 RETURN
219 END IF
220*
221* Quick return if possible
222*
223 IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 )
224 $ RETURN
225*
226 IF( ( left .AND. .NOT.notran ) .OR. ( .NOT.left .AND. notran ) )
227 $ THEN
228 i1 = 1
229 i2 = k
230 i3 = 1
231 ELSE
232 i1 = k
233 i2 = 1
234 i3 = -1
235 END IF
236*
237 IF( left ) THEN
238 ni = n
239 jc = 1
240 ELSE
241 mi = m
242 ic = 1
243 END IF
244*
245 DO 10 i = i1, i2, i3
246 IF( left ) THEN
247*
248* H(i) is applied to C(i:m,1:n)
249*
250 mi = m - i + 1
251 ic = i
252 ELSE
253*
254* H(i) is applied to C(1:m,i:n)
255*
256 ni = n - i + 1
257 jc = i
258 END IF
259*
260* Apply H(i)
261*
262 CALL slarf1f( side, mi, ni, a( i, i ), 1, tau( i ), c( ic,
263 $ jc ), ldc, work )
264 10 CONTINUE
265 RETURN
266*
267* End of SORM2R
268*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine slarf1f(side, m, n, v, incv, tau, c, ldc, work)
SLARF1F applies an elementary reflector to a general rectangular
Definition slarf1f.f:123
Here is the call graph for this function:
Here is the caller graph for this function: