LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ stgsja()

subroutine stgsja ( character jobu,
character jobv,
character jobq,
integer m,
integer p,
integer n,
integer k,
integer l,
real, dimension( lda, * ) a,
integer lda,
real, dimension( ldb, * ) b,
integer ldb,
real tola,
real tolb,
real, dimension( * ) alpha,
real, dimension( * ) beta,
real, dimension( ldu, * ) u,
integer ldu,
real, dimension( ldv, * ) v,
integer ldv,
real, dimension( ldq, * ) q,
integer ldq,
real, dimension( * ) work,
integer ncycle,
integer info )

STGSJA

Download STGSJA + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> STGSJA computes the generalized singular value decomposition (GSVD)
!> of two real upper triangular (or trapezoidal) matrices A and B.
!>
!> On entry, it is assumed that matrices A and B have the following
!> forms, which may be obtained by the preprocessing subroutine SGGSVP
!> from a general M-by-N matrix A and P-by-N matrix B:
!>
!>              N-K-L  K    L
!>    A =    K ( 0    A12  A13 ) if M-K-L >= 0;
!>           L ( 0     0   A23 )
!>       M-K-L ( 0     0    0  )
!>
!>            N-K-L  K    L
!>    A =  K ( 0    A12  A13 ) if M-K-L < 0;
!>       M-K ( 0     0   A23 )
!>
!>            N-K-L  K    L
!>    B =  L ( 0     0   B13 )
!>       P-L ( 0     0    0  )
!>
!> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
!> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
!> otherwise A23 is (M-K)-by-L upper trapezoidal.
!>
!> On exit,
!>
!>        U**T *A*Q = D1*( 0 R ),    V**T *B*Q = D2*( 0 R ),
!>
!> where U, V and Q are orthogonal matrices.
!> R is a nonsingular upper triangular matrix, and D1 and D2 are
!> ``diagonal'' matrices, which are of the following structures:
!>
!> If M-K-L >= 0,
!>
!>                     K  L
!>        D1 =     K ( I  0 )
!>                 L ( 0  C )
!>             M-K-L ( 0  0 )
!>
!>                   K  L
!>        D2 = L   ( 0  S )
!>             P-L ( 0  0 )
!>
!>                N-K-L  K    L
!>   ( 0 R ) = K (  0   R11  R12 ) K
!>             L (  0    0   R22 ) L
!>
!> where
!>
!>   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
!>   S = diag( BETA(K+1),  ... , BETA(K+L) ),
!>   C**2 + S**2 = I.
!>
!>   R is stored in A(1:K+L,N-K-L+1:N) on exit.
!>
!> If M-K-L < 0,
!>
!>                K M-K K+L-M
!>     D1 =   K ( I  0    0   )
!>          M-K ( 0  C    0   )
!>
!>                  K M-K K+L-M
!>     D2 =   M-K ( 0  S    0   )
!>          K+L-M ( 0  0    I   )
!>            P-L ( 0  0    0   )
!>
!>                N-K-L  K   M-K  K+L-M
!> ( 0 R ) =    K ( 0    R11  R12  R13  )
!>           M-K ( 0     0   R22  R23  )
!>         K+L-M ( 0     0    0   R33  )
!>
!> where
!> C = diag( ALPHA(K+1), ... , ALPHA(M) ),
!> S = diag( BETA(K+1),  ... , BETA(M) ),
!> C**2 + S**2 = I.
!>
!> R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
!>     (  0  R22 R23 )
!> in B(M-K+1:L,N+M-K-L+1:N) on exit.
!>
!> The computation of the orthogonal transformation matrices U, V or Q
!> is optional.  These matrices may either be formed explicitly, or they
!> may be postmultiplied into input matrices U1, V1, or Q1.
!> 
Parameters
[in]JOBU
!>          JOBU is CHARACTER*1
!>          = 'U':  U must contain an orthogonal matrix U1 on entry, and
!>                  the product U1*U is returned;
!>          = 'I':  U is initialized to the unit matrix, and the
!>                  orthogonal matrix U is returned;
!>          = 'N':  U is not computed.
!> 
[in]JOBV
!>          JOBV is CHARACTER*1
!>          = 'V':  V must contain an orthogonal matrix V1 on entry, and
!>                  the product V1*V is returned;
!>          = 'I':  V is initialized to the unit matrix, and the
!>                  orthogonal matrix V is returned;
!>          = 'N':  V is not computed.
!> 
[in]JOBQ
!>          JOBQ is CHARACTER*1
!>          = 'Q':  Q must contain an orthogonal matrix Q1 on entry, and
!>                  the product Q1*Q is returned;
!>          = 'I':  Q is initialized to the unit matrix, and the
!>                  orthogonal matrix Q is returned;
!>          = 'N':  Q is not computed.
!> 
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]P
!>          P is INTEGER
!>          The number of rows of the matrix B.  P >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrices A and B.  N >= 0.
!> 
[in]K
!>          K is INTEGER
!> 
[in]L
!>          L is INTEGER
!>
!>          K and L specify the subblocks in the input matrices A and B:
!>          A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
!>          of A and B, whose GSVD is going to be computed by STGSJA.
!>          See Further Details.
!> 
[in,out]A
!>          A is REAL array, dimension (LDA,N)
!>          On entry, the M-by-N matrix A.
!>          On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
!>          matrix R or part of R.  See Purpose for details.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A. LDA >= max(1,M).
!> 
[in,out]B
!>          B is REAL array, dimension (LDB,N)
!>          On entry, the P-by-N matrix B.
!>          On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
!>          a part of R.  See Purpose for details.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B. LDB >= max(1,P).
!> 
[in]TOLA
!>          TOLA is REAL
!> 
[in]TOLB
!>          TOLB is REAL
!>
!>          TOLA and TOLB are the convergence criteria for the Jacobi-
!>          Kogbetliantz iteration procedure. Generally, they are the
!>          same as used in the preprocessing step, say
!>              TOLA = max(M,N)*norm(A)*MACHEPS,
!>              TOLB = max(P,N)*norm(B)*MACHEPS.
!> 
[out]ALPHA
!>          ALPHA is REAL array, dimension (N)
!> 
[out]BETA
!>          BETA is REAL array, dimension (N)
!>
!>          On exit, ALPHA and BETA contain the generalized singular
!>          value pairs of A and B;
!>            ALPHA(1:K) = 1,
!>            BETA(1:K)  = 0,
!>          and if M-K-L >= 0,
!>            ALPHA(K+1:K+L) = diag(C),
!>            BETA(K+1:K+L)  = diag(S),
!>          or if M-K-L < 0,
!>            ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
!>            BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
!>          Furthermore, if K+L < N,
!>            ALPHA(K+L+1:N) = 0 and
!>            BETA(K+L+1:N)  = 0.
!> 
[in,out]U
!>          U is REAL array, dimension (LDU,M)
!>          On entry, if JOBU = 'U', U must contain a matrix U1 (usually
!>          the orthogonal matrix returned by SGGSVP).
!>          On exit,
!>          if JOBU = 'I', U contains the orthogonal matrix U;
!>          if JOBU = 'U', U contains the product U1*U.
!>          If JOBU = 'N', U is not referenced.
!> 
[in]LDU
!>          LDU is INTEGER
!>          The leading dimension of the array U. LDU >= max(1,M) if
!>          JOBU = 'U'; LDU >= 1 otherwise.
!> 
[in,out]V
!>          V is REAL array, dimension (LDV,P)
!>          On entry, if JOBV = 'V', V must contain a matrix V1 (usually
!>          the orthogonal matrix returned by SGGSVP).
!>          On exit,
!>          if JOBV = 'I', V contains the orthogonal matrix V;
!>          if JOBV = 'V', V contains the product V1*V.
!>          If JOBV = 'N', V is not referenced.
!> 
[in]LDV
!>          LDV is INTEGER
!>          The leading dimension of the array V. LDV >= max(1,P) if
!>          JOBV = 'V'; LDV >= 1 otherwise.
!> 
[in,out]Q
!>          Q is REAL array, dimension (LDQ,N)
!>          On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
!>          the orthogonal matrix returned by SGGSVP).
!>          On exit,
!>          if JOBQ = 'I', Q contains the orthogonal matrix Q;
!>          if JOBQ = 'Q', Q contains the product Q1*Q.
!>          If JOBQ = 'N', Q is not referenced.
!> 
[in]LDQ
!>          LDQ is INTEGER
!>          The leading dimension of the array Q. LDQ >= max(1,N) if
!>          JOBQ = 'Q'; LDQ >= 1 otherwise.
!> 
[out]WORK
!>          WORK is REAL array, dimension (2*N)
!> 
[out]NCYCLE
!>          NCYCLE is INTEGER
!>          The number of cycles required for convergence.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          = 1:  the procedure does not converge after MAXIT cycles.
!> 
!>  Internal Parameters
!>  ===================
!>
!>  MAXIT   INTEGER
!>          MAXIT specifies the total loops that the iterative procedure
!>          may take. If after MAXIT cycles, the routine fails to
!>          converge, we return INFO = 1.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  STGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
!>  min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
!>  matrix B13 to the form:
!>
!>           U1**T *A13*Q1 = C1*R1; V1**T *B13*Q1 = S1*R1,
!>
!>  where U1, V1 and Q1 are orthogonal matrix, and Z**T is the transpose
!>  of Z.  C1 and S1 are diagonal matrices satisfying
!>
!>                C1**2 + S1**2 = I,
!>
!>  and R1 is an L-by-L nonsingular upper triangular matrix.
!> 

Definition at line 373 of file stgsja.f.

376*
377* -- LAPACK computational routine --
378* -- LAPACK is a software package provided by Univ. of Tennessee, --
379* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
380*
381* .. Scalar Arguments ..
382 CHARACTER JOBQ, JOBU, JOBV
383 INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
384 $ NCYCLE, P
385 REAL TOLA, TOLB
386* ..
387* .. Array Arguments ..
388 REAL A( LDA, * ), ALPHA( * ), B( LDB, * ),
389 $ BETA( * ), Q( LDQ, * ), U( LDU, * ),
390 $ V( LDV, * ), WORK( * )
391* ..
392*
393* =====================================================================
394*
395* .. Parameters ..
396 INTEGER MAXIT
397 parameter( maxit = 40 )
398 REAL ZERO, ONE, HUGENUM
399 parameter( zero = 0.0e+0, one = 1.0e+0 )
400* ..
401* .. Local Scalars ..
402*
403 LOGICAL INITQ, INITU, INITV, UPPER, WANTQ, WANTU, WANTV
404 INTEGER I, J, KCYCLE
405 REAL A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, ERROR,
406 $ GAMMA, RWK, SNQ, SNU, SNV, SSMIN
407* ..
408* .. External Functions ..
409 LOGICAL LSAME
410 EXTERNAL lsame
411* ..
412* .. External Subroutines ..
413 EXTERNAL scopy, slags2, slapll, slartg, slaset,
414 $ srot,
415 $ sscal, xerbla
416* ..
417* .. Intrinsic Functions ..
418 INTRINSIC abs, max, min, huge
419 parameter( hugenum = huge(zero) )
420* ..
421* .. Executable Statements ..
422*
423* Decode and test the input parameters
424*
425 initu = lsame( jobu, 'I' )
426 wantu = initu .OR. lsame( jobu, 'U' )
427*
428 initv = lsame( jobv, 'I' )
429 wantv = initv .OR. lsame( jobv, 'V' )
430*
431 initq = lsame( jobq, 'I' )
432 wantq = initq .OR. lsame( jobq, 'Q' )
433*
434 info = 0
435 IF( .NOT.( initu .OR. wantu .OR. lsame( jobu, 'N' ) ) ) THEN
436 info = -1
437 ELSE IF( .NOT.( initv .OR.
438 $ wantv .OR.
439 $ lsame( jobv, 'N' ) ) ) THEN
440 info = -2
441 ELSE IF( .NOT.( initq .OR.
442 $ wantq .OR.
443 $ lsame( jobq, 'N' ) ) ) THEN
444 info = -3
445 ELSE IF( m.LT.0 ) THEN
446 info = -4
447 ELSE IF( p.LT.0 ) THEN
448 info = -5
449 ELSE IF( n.LT.0 ) THEN
450 info = -6
451 ELSE IF( lda.LT.max( 1, m ) ) THEN
452 info = -10
453 ELSE IF( ldb.LT.max( 1, p ) ) THEN
454 info = -12
455 ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
456 info = -18
457 ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
458 info = -20
459 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
460 info = -22
461 END IF
462 IF( info.NE.0 ) THEN
463 CALL xerbla( 'STGSJA', -info )
464 RETURN
465 END IF
466*
467* Initialize U, V and Q, if necessary
468*
469 IF( initu )
470 $ CALL slaset( 'Full', m, m, zero, one, u, ldu )
471 IF( initv )
472 $ CALL slaset( 'Full', p, p, zero, one, v, ldv )
473 IF( initq )
474 $ CALL slaset( 'Full', n, n, zero, one, q, ldq )
475*
476* Loop until convergence
477*
478 upper = .false.
479 DO 40 kcycle = 1, maxit
480*
481 upper = .NOT.upper
482*
483 DO 20 i = 1, l - 1
484 DO 10 j = i + 1, l
485*
486 a1 = zero
487 a2 = zero
488 a3 = zero
489 IF( k+i.LE.m )
490 $ a1 = a( k+i, n-l+i )
491 IF( k+j.LE.m )
492 $ a3 = a( k+j, n-l+j )
493*
494 b1 = b( i, n-l+i )
495 b3 = b( j, n-l+j )
496*
497 IF( upper ) THEN
498 IF( k+i.LE.m )
499 $ a2 = a( k+i, n-l+j )
500 b2 = b( i, n-l+j )
501 ELSE
502 IF( k+j.LE.m )
503 $ a2 = a( k+j, n-l+i )
504 b2 = b( j, n-l+i )
505 END IF
506*
507 CALL slags2( upper, a1, a2, a3, b1, b2, b3, csu, snu,
508 $ csv, snv, csq, snq )
509*
510* Update (K+I)-th and (K+J)-th rows of matrix A: U**T *A
511*
512 IF( k+j.LE.m )
513 $ CALL srot( l, a( k+j, n-l+1 ), lda, a( k+i,
514 $ n-l+1 ),
515 $ lda, csu, snu )
516*
517* Update I-th and J-th rows of matrix B: V**T *B
518*
519 CALL srot( l, b( j, n-l+1 ), ldb, b( i, n-l+1 ), ldb,
520 $ csv, snv )
521*
522* Update (N-L+I)-th and (N-L+J)-th columns of matrices
523* A and B: A*Q and B*Q
524*
525 CALL srot( min( k+l, m ), a( 1, n-l+j ), 1,
526 $ a( 1, n-l+i ), 1, csq, snq )
527*
528 CALL srot( l, b( 1, n-l+j ), 1, b( 1, n-l+i ), 1, csq,
529 $ snq )
530*
531 IF( upper ) THEN
532 IF( k+i.LE.m )
533 $ a( k+i, n-l+j ) = zero
534 b( i, n-l+j ) = zero
535 ELSE
536 IF( k+j.LE.m )
537 $ a( k+j, n-l+i ) = zero
538 b( j, n-l+i ) = zero
539 END IF
540*
541* Update orthogonal matrices U, V, Q, if desired.
542*
543 IF( wantu .AND. k+j.LE.m )
544 $ CALL srot( m, u( 1, k+j ), 1, u( 1, k+i ), 1, csu,
545 $ snu )
546*
547 IF( wantv )
548 $ CALL srot( p, v( 1, j ), 1, v( 1, i ), 1, csv,
549 $ snv )
550*
551 IF( wantq )
552 $ CALL srot( n, q( 1, n-l+j ), 1, q( 1, n-l+i ), 1,
553 $ csq,
554 $ snq )
555*
556 10 CONTINUE
557 20 CONTINUE
558*
559 IF( .NOT.upper ) THEN
560*
561* The matrices A13 and B13 were lower triangular at the start
562* of the cycle, and are now upper triangular.
563*
564* Convergence test: test the parallelism of the corresponding
565* rows of A and B.
566*
567 error = zero
568 DO 30 i = 1, min( l, m-k )
569 CALL scopy( l-i+1, a( k+i, n-l+i ), lda, work, 1 )
570 CALL scopy( l-i+1, b( i, n-l+i ), ldb, work( l+1 ),
571 $ 1 )
572 CALL slapll( l-i+1, work, 1, work( l+1 ), 1, ssmin )
573 error = max( error, ssmin )
574 30 CONTINUE
575*
576 IF( abs( error ).LE.min( tola, tolb ) )
577 $ GO TO 50
578 END IF
579*
580* End of cycle loop
581*
582 40 CONTINUE
583*
584* The algorithm has not converged after MAXIT cycles.
585*
586 info = 1
587 GO TO 100
588*
589 50 CONTINUE
590*
591* If ERROR <= MIN(TOLA,TOLB), then the algorithm has converged.
592* Compute the generalized singular value pairs (ALPHA, BETA), and
593* set the triangular matrix R to array A.
594*
595 DO 60 i = 1, k
596 alpha( i ) = one
597 beta( i ) = zero
598 60 CONTINUE
599*
600 DO 70 i = 1, min( l, m-k )
601*
602 a1 = a( k+i, n-l+i )
603 b1 = b( i, n-l+i )
604 gamma = b1 / a1
605*
606 IF( (gamma.LE.hugenum).AND.(gamma.GE.-hugenum) ) THEN
607*
608* change sign if necessary
609*
610 IF( gamma.LT.zero ) THEN
611 CALL sscal( l-i+1, -one, b( i, n-l+i ), ldb )
612 IF( wantv )
613 $ CALL sscal( p, -one, v( 1, i ), 1 )
614 END IF
615*
616 CALL slartg( abs( gamma ), one, beta( k+i ),
617 $ alpha( k+i ),
618 $ rwk )
619*
620 IF( alpha( k+i ).GE.beta( k+i ) ) THEN
621 CALL sscal( l-i+1, one / alpha( k+i ), a( k+i,
622 $ n-l+i ),
623 $ lda )
624 ELSE
625 CALL sscal( l-i+1, one / beta( k+i ), b( i, n-l+i ),
626 $ ldb )
627 CALL scopy( l-i+1, b( i, n-l+i ), ldb, a( k+i,
628 $ n-l+i ),
629 $ lda )
630 END IF
631*
632 ELSE
633*
634 alpha( k+i ) = zero
635 beta( k+i ) = one
636 CALL scopy( l-i+1, b( i, n-l+i ), ldb, a( k+i, n-l+i ),
637 $ lda )
638*
639 END IF
640*
641 70 CONTINUE
642*
643* Post-assignment
644*
645 DO 80 i = m + 1, k + l
646 alpha( i ) = zero
647 beta( i ) = one
648 80 CONTINUE
649*
650 IF( k+l.LT.n ) THEN
651 DO 90 i = k + l + 1, n
652 alpha( i ) = zero
653 beta( i ) = zero
654 90 CONTINUE
655 END IF
656*
657 100 CONTINUE
658 ncycle = kcycle
659 RETURN
660*
661* End of STGSJA
662*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine slags2(upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq)
SLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such tha...
Definition slags2.f:151
subroutine slapll(n, x, incx, y, incy, ssmin)
SLAPLL measures the linear dependence of two vectors.
Definition slapll.f:100
subroutine slartg(f, g, c, s, r)
SLARTG generates a plane rotation with real cosine and real sine.
Definition slartg.f90:111
subroutine slaset(uplo, m, n, alpha, beta, a, lda)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition slaset.f:108
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine srot(n, sx, incx, sy, incy, c, s)
SROT
Definition srot.f:92
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
Here is the call graph for this function:
Here is the caller graph for this function: