LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
stgsja.f
Go to the documentation of this file.
1*> \brief \b STGSJA
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download STGSJA + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stgsja.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stgsja.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stgsja.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE STGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
20* LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV,
21* Q, LDQ, WORK, NCYCLE, INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER JOBQ, JOBU, JOBV
25* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
26* $ NCYCLE, P
27* REAL TOLA, TOLB
28* ..
29* .. Array Arguments ..
30* REAL A( LDA, * ), ALPHA( * ), B( LDB, * ),
31* $ BETA( * ), Q( LDQ, * ), U( LDU, * ),
32* $ V( LDV, * ), WORK( * )
33* ..
34*
35*
36*> \par Purpose:
37* =============
38*>
39*> \verbatim
40*>
41*> STGSJA computes the generalized singular value decomposition (GSVD)
42*> of two real upper triangular (or trapezoidal) matrices A and B.
43*>
44*> On entry, it is assumed that matrices A and B have the following
45*> forms, which may be obtained by the preprocessing subroutine SGGSVP
46*> from a general M-by-N matrix A and P-by-N matrix B:
47*>
48*> N-K-L K L
49*> A = K ( 0 A12 A13 ) if M-K-L >= 0;
50*> L ( 0 0 A23 )
51*> M-K-L ( 0 0 0 )
52*>
53*> N-K-L K L
54*> A = K ( 0 A12 A13 ) if M-K-L < 0;
55*> M-K ( 0 0 A23 )
56*>
57*> N-K-L K L
58*> B = L ( 0 0 B13 )
59*> P-L ( 0 0 0 )
60*>
61*> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
62*> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
63*> otherwise A23 is (M-K)-by-L upper trapezoidal.
64*>
65*> On exit,
66*>
67*> U**T *A*Q = D1*( 0 R ), V**T *B*Q = D2*( 0 R ),
68*>
69*> where U, V and Q are orthogonal matrices.
70*> R is a nonsingular upper triangular matrix, and D1 and D2 are
71*> ``diagonal'' matrices, which are of the following structures:
72*>
73*> If M-K-L >= 0,
74*>
75*> K L
76*> D1 = K ( I 0 )
77*> L ( 0 C )
78*> M-K-L ( 0 0 )
79*>
80*> K L
81*> D2 = L ( 0 S )
82*> P-L ( 0 0 )
83*>
84*> N-K-L K L
85*> ( 0 R ) = K ( 0 R11 R12 ) K
86*> L ( 0 0 R22 ) L
87*>
88*> where
89*>
90*> C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
91*> S = diag( BETA(K+1), ... , BETA(K+L) ),
92*> C**2 + S**2 = I.
93*>
94*> R is stored in A(1:K+L,N-K-L+1:N) on exit.
95*>
96*> If M-K-L < 0,
97*>
98*> K M-K K+L-M
99*> D1 = K ( I 0 0 )
100*> M-K ( 0 C 0 )
101*>
102*> K M-K K+L-M
103*> D2 = M-K ( 0 S 0 )
104*> K+L-M ( 0 0 I )
105*> P-L ( 0 0 0 )
106*>
107*> N-K-L K M-K K+L-M
108*> ( 0 R ) = K ( 0 R11 R12 R13 )
109*> M-K ( 0 0 R22 R23 )
110*> K+L-M ( 0 0 0 R33 )
111*>
112*> where
113*> C = diag( ALPHA(K+1), ... , ALPHA(M) ),
114*> S = diag( BETA(K+1), ... , BETA(M) ),
115*> C**2 + S**2 = I.
116*>
117*> R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
118*> ( 0 R22 R23 )
119*> in B(M-K+1:L,N+M-K-L+1:N) on exit.
120*>
121*> The computation of the orthogonal transformation matrices U, V or Q
122*> is optional. These matrices may either be formed explicitly, or they
123*> may be postmultiplied into input matrices U1, V1, or Q1.
124*> \endverbatim
125*
126* Arguments:
127* ==========
128*
129*> \param[in] JOBU
130*> \verbatim
131*> JOBU is CHARACTER*1
132*> = 'U': U must contain an orthogonal matrix U1 on entry, and
133*> the product U1*U is returned;
134*> = 'I': U is initialized to the unit matrix, and the
135*> orthogonal matrix U is returned;
136*> = 'N': U is not computed.
137*> \endverbatim
138*>
139*> \param[in] JOBV
140*> \verbatim
141*> JOBV is CHARACTER*1
142*> = 'V': V must contain an orthogonal matrix V1 on entry, and
143*> the product V1*V is returned;
144*> = 'I': V is initialized to the unit matrix, and the
145*> orthogonal matrix V is returned;
146*> = 'N': V is not computed.
147*> \endverbatim
148*>
149*> \param[in] JOBQ
150*> \verbatim
151*> JOBQ is CHARACTER*1
152*> = 'Q': Q must contain an orthogonal matrix Q1 on entry, and
153*> the product Q1*Q is returned;
154*> = 'I': Q is initialized to the unit matrix, and the
155*> orthogonal matrix Q is returned;
156*> = 'N': Q is not computed.
157*> \endverbatim
158*>
159*> \param[in] M
160*> \verbatim
161*> M is INTEGER
162*> The number of rows of the matrix A. M >= 0.
163*> \endverbatim
164*>
165*> \param[in] P
166*> \verbatim
167*> P is INTEGER
168*> The number of rows of the matrix B. P >= 0.
169*> \endverbatim
170*>
171*> \param[in] N
172*> \verbatim
173*> N is INTEGER
174*> The number of columns of the matrices A and B. N >= 0.
175*> \endverbatim
176*>
177*> \param[in] K
178*> \verbatim
179*> K is INTEGER
180*> \endverbatim
181*>
182*> \param[in] L
183*> \verbatim
184*> L is INTEGER
185*>
186*> K and L specify the subblocks in the input matrices A and B:
187*> A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
188*> of A and B, whose GSVD is going to be computed by STGSJA.
189*> See Further Details.
190*> \endverbatim
191*>
192*> \param[in,out] A
193*> \verbatim
194*> A is REAL array, dimension (LDA,N)
195*> On entry, the M-by-N matrix A.
196*> On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
197*> matrix R or part of R. See Purpose for details.
198*> \endverbatim
199*>
200*> \param[in] LDA
201*> \verbatim
202*> LDA is INTEGER
203*> The leading dimension of the array A. LDA >= max(1,M).
204*> \endverbatim
205*>
206*> \param[in,out] B
207*> \verbatim
208*> B is REAL array, dimension (LDB,N)
209*> On entry, the P-by-N matrix B.
210*> On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
211*> a part of R. See Purpose for details.
212*> \endverbatim
213*>
214*> \param[in] LDB
215*> \verbatim
216*> LDB is INTEGER
217*> The leading dimension of the array B. LDB >= max(1,P).
218*> \endverbatim
219*>
220*> \param[in] TOLA
221*> \verbatim
222*> TOLA is REAL
223*> \endverbatim
224*>
225*> \param[in] TOLB
226*> \verbatim
227*> TOLB is REAL
228*>
229*> TOLA and TOLB are the convergence criteria for the Jacobi-
230*> Kogbetliantz iteration procedure. Generally, they are the
231*> same as used in the preprocessing step, say
232*> TOLA = max(M,N)*norm(A)*MACHEPS,
233*> TOLB = max(P,N)*norm(B)*MACHEPS.
234*> \endverbatim
235*>
236*> \param[out] ALPHA
237*> \verbatim
238*> ALPHA is REAL array, dimension (N)
239*> \endverbatim
240*>
241*> \param[out] BETA
242*> \verbatim
243*> BETA is REAL array, dimension (N)
244*>
245*> On exit, ALPHA and BETA contain the generalized singular
246*> value pairs of A and B;
247*> ALPHA(1:K) = 1,
248*> BETA(1:K) = 0,
249*> and if M-K-L >= 0,
250*> ALPHA(K+1:K+L) = diag(C),
251*> BETA(K+1:K+L) = diag(S),
252*> or if M-K-L < 0,
253*> ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
254*> BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
255*> Furthermore, if K+L < N,
256*> ALPHA(K+L+1:N) = 0 and
257*> BETA(K+L+1:N) = 0.
258*> \endverbatim
259*>
260*> \param[in,out] U
261*> \verbatim
262*> U is REAL array, dimension (LDU,M)
263*> On entry, if JOBU = 'U', U must contain a matrix U1 (usually
264*> the orthogonal matrix returned by SGGSVP).
265*> On exit,
266*> if JOBU = 'I', U contains the orthogonal matrix U;
267*> if JOBU = 'U', U contains the product U1*U.
268*> If JOBU = 'N', U is not referenced.
269*> \endverbatim
270*>
271*> \param[in] LDU
272*> \verbatim
273*> LDU is INTEGER
274*> The leading dimension of the array U. LDU >= max(1,M) if
275*> JOBU = 'U'; LDU >= 1 otherwise.
276*> \endverbatim
277*>
278*> \param[in,out] V
279*> \verbatim
280*> V is REAL array, dimension (LDV,P)
281*> On entry, if JOBV = 'V', V must contain a matrix V1 (usually
282*> the orthogonal matrix returned by SGGSVP).
283*> On exit,
284*> if JOBV = 'I', V contains the orthogonal matrix V;
285*> if JOBV = 'V', V contains the product V1*V.
286*> If JOBV = 'N', V is not referenced.
287*> \endverbatim
288*>
289*> \param[in] LDV
290*> \verbatim
291*> LDV is INTEGER
292*> The leading dimension of the array V. LDV >= max(1,P) if
293*> JOBV = 'V'; LDV >= 1 otherwise.
294*> \endverbatim
295*>
296*> \param[in,out] Q
297*> \verbatim
298*> Q is REAL array, dimension (LDQ,N)
299*> On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
300*> the orthogonal matrix returned by SGGSVP).
301*> On exit,
302*> if JOBQ = 'I', Q contains the orthogonal matrix Q;
303*> if JOBQ = 'Q', Q contains the product Q1*Q.
304*> If JOBQ = 'N', Q is not referenced.
305*> \endverbatim
306*>
307*> \param[in] LDQ
308*> \verbatim
309*> LDQ is INTEGER
310*> The leading dimension of the array Q. LDQ >= max(1,N) if
311*> JOBQ = 'Q'; LDQ >= 1 otherwise.
312*> \endverbatim
313*>
314*> \param[out] WORK
315*> \verbatim
316*> WORK is REAL array, dimension (2*N)
317*> \endverbatim
318*>
319*> \param[out] NCYCLE
320*> \verbatim
321*> NCYCLE is INTEGER
322*> The number of cycles required for convergence.
323*> \endverbatim
324*>
325*> \param[out] INFO
326*> \verbatim
327*> INFO is INTEGER
328*> = 0: successful exit
329*> < 0: if INFO = -i, the i-th argument had an illegal value.
330*> = 1: the procedure does not converge after MAXIT cycles.
331*> \endverbatim
332*>
333*> \verbatim
334*> Internal Parameters
335*> ===================
336*>
337*> MAXIT INTEGER
338*> MAXIT specifies the total loops that the iterative procedure
339*> may take. If after MAXIT cycles, the routine fails to
340*> converge, we return INFO = 1.
341*> \endverbatim
342*
343* Authors:
344* ========
345*
346*> \author Univ. of Tennessee
347*> \author Univ. of California Berkeley
348*> \author Univ. of Colorado Denver
349*> \author NAG Ltd.
350*
351*> \ingroup tgsja
352*
353*> \par Further Details:
354* =====================
355*>
356*> \verbatim
357*>
358*> STGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
359*> min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
360*> matrix B13 to the form:
361*>
362*> U1**T *A13*Q1 = C1*R1; V1**T *B13*Q1 = S1*R1,
363*>
364*> where U1, V1 and Q1 are orthogonal matrix, and Z**T is the transpose
365*> of Z. C1 and S1 are diagonal matrices satisfying
366*>
367*> C1**2 + S1**2 = I,
368*>
369*> and R1 is an L-by-L nonsingular upper triangular matrix.
370*> \endverbatim
371*>
372* =====================================================================
373 SUBROUTINE stgsja( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
374 $ LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV,
375 $ Q, LDQ, WORK, NCYCLE, INFO )
376*
377* -- LAPACK computational routine --
378* -- LAPACK is a software package provided by Univ. of Tennessee, --
379* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
380*
381* .. Scalar Arguments ..
382 CHARACTER JOBQ, JOBU, JOBV
383 INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
384 $ ncycle, p
385 REAL TOLA, TOLB
386* ..
387* .. Array Arguments ..
388 REAL A( LDA, * ), ALPHA( * ), B( LDB, * ),
389 $ BETA( * ), Q( LDQ, * ), U( LDU, * ),
390 $ v( ldv, * ), work( * )
391* ..
392*
393* =====================================================================
394*
395* .. Parameters ..
396 INTEGER MAXIT
397 PARAMETER ( MAXIT = 40 )
398 REAL ZERO, ONE, HUGENUM
399 parameter( zero = 0.0e+0, one = 1.0e+0 )
400* ..
401* .. Local Scalars ..
402*
403 LOGICAL INITQ, INITU, INITV, UPPER, WANTQ, WANTU, WANTV
404 INTEGER I, J, KCYCLE
405 REAL A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, ERROR,
406 $ gamma, rwk, snq, snu, snv, ssmin
407* ..
408* .. External Functions ..
409 LOGICAL LSAME
410 EXTERNAL LSAME
411* ..
412* .. External Subroutines ..
413 EXTERNAL scopy, slags2, slapll, slartg, slaset,
414 $ srot,
415 $ sscal, xerbla
416* ..
417* .. Intrinsic Functions ..
418 INTRINSIC abs, max, min, huge
419 parameter( hugenum = huge(zero) )
420* ..
421* .. Executable Statements ..
422*
423* Decode and test the input parameters
424*
425 initu = lsame( jobu, 'I' )
426 wantu = initu .OR. lsame( jobu, 'U' )
427*
428 initv = lsame( jobv, 'I' )
429 wantv = initv .OR. lsame( jobv, 'V' )
430*
431 initq = lsame( jobq, 'I' )
432 wantq = initq .OR. lsame( jobq, 'Q' )
433*
434 info = 0
435 IF( .NOT.( initu .OR. wantu .OR. lsame( jobu, 'N' ) ) ) THEN
436 info = -1
437 ELSE IF( .NOT.( initv .OR.
438 $ wantv .OR.
439 $ lsame( jobv, 'N' ) ) ) THEN
440 info = -2
441 ELSE IF( .NOT.( initq .OR.
442 $ wantq .OR.
443 $ lsame( jobq, 'N' ) ) ) THEN
444 info = -3
445 ELSE IF( m.LT.0 ) THEN
446 info = -4
447 ELSE IF( p.LT.0 ) THEN
448 info = -5
449 ELSE IF( n.LT.0 ) THEN
450 info = -6
451 ELSE IF( lda.LT.max( 1, m ) ) THEN
452 info = -10
453 ELSE IF( ldb.LT.max( 1, p ) ) THEN
454 info = -12
455 ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
456 info = -18
457 ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
458 info = -20
459 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
460 info = -22
461 END IF
462 IF( info.NE.0 ) THEN
463 CALL xerbla( 'STGSJA', -info )
464 RETURN
465 END IF
466*
467* Initialize U, V and Q, if necessary
468*
469 IF( initu )
470 $ CALL slaset( 'Full', m, m, zero, one, u, ldu )
471 IF( initv )
472 $ CALL slaset( 'Full', p, p, zero, one, v, ldv )
473 IF( initq )
474 $ CALL slaset( 'Full', n, n, zero, one, q, ldq )
475*
476* Loop until convergence
477*
478 upper = .false.
479 DO 40 kcycle = 1, maxit
480*
481 upper = .NOT.upper
482*
483 DO 20 i = 1, l - 1
484 DO 10 j = i + 1, l
485*
486 a1 = zero
487 a2 = zero
488 a3 = zero
489 IF( k+i.LE.m )
490 $ a1 = a( k+i, n-l+i )
491 IF( k+j.LE.m )
492 $ a3 = a( k+j, n-l+j )
493*
494 b1 = b( i, n-l+i )
495 b3 = b( j, n-l+j )
496*
497 IF( upper ) THEN
498 IF( k+i.LE.m )
499 $ a2 = a( k+i, n-l+j )
500 b2 = b( i, n-l+j )
501 ELSE
502 IF( k+j.LE.m )
503 $ a2 = a( k+j, n-l+i )
504 b2 = b( j, n-l+i )
505 END IF
506*
507 CALL slags2( upper, a1, a2, a3, b1, b2, b3, csu, snu,
508 $ csv, snv, csq, snq )
509*
510* Update (K+I)-th and (K+J)-th rows of matrix A: U**T *A
511*
512 IF( k+j.LE.m )
513 $ CALL srot( l, a( k+j, n-l+1 ), lda, a( k+i,
514 $ n-l+1 ),
515 $ lda, csu, snu )
516*
517* Update I-th and J-th rows of matrix B: V**T *B
518*
519 CALL srot( l, b( j, n-l+1 ), ldb, b( i, n-l+1 ), ldb,
520 $ csv, snv )
521*
522* Update (N-L+I)-th and (N-L+J)-th columns of matrices
523* A and B: A*Q and B*Q
524*
525 CALL srot( min( k+l, m ), a( 1, n-l+j ), 1,
526 $ a( 1, n-l+i ), 1, csq, snq )
527*
528 CALL srot( l, b( 1, n-l+j ), 1, b( 1, n-l+i ), 1, csq,
529 $ snq )
530*
531 IF( upper ) THEN
532 IF( k+i.LE.m )
533 $ a( k+i, n-l+j ) = zero
534 b( i, n-l+j ) = zero
535 ELSE
536 IF( k+j.LE.m )
537 $ a( k+j, n-l+i ) = zero
538 b( j, n-l+i ) = zero
539 END IF
540*
541* Update orthogonal matrices U, V, Q, if desired.
542*
543 IF( wantu .AND. k+j.LE.m )
544 $ CALL srot( m, u( 1, k+j ), 1, u( 1, k+i ), 1, csu,
545 $ snu )
546*
547 IF( wantv )
548 $ CALL srot( p, v( 1, j ), 1, v( 1, i ), 1, csv,
549 $ snv )
550*
551 IF( wantq )
552 $ CALL srot( n, q( 1, n-l+j ), 1, q( 1, n-l+i ), 1,
553 $ csq,
554 $ snq )
555*
556 10 CONTINUE
557 20 CONTINUE
558*
559 IF( .NOT.upper ) THEN
560*
561* The matrices A13 and B13 were lower triangular at the start
562* of the cycle, and are now upper triangular.
563*
564* Convergence test: test the parallelism of the corresponding
565* rows of A and B.
566*
567 error = zero
568 DO 30 i = 1, min( l, m-k )
569 CALL scopy( l-i+1, a( k+i, n-l+i ), lda, work, 1 )
570 CALL scopy( l-i+1, b( i, n-l+i ), ldb, work( l+1 ),
571 $ 1 )
572 CALL slapll( l-i+1, work, 1, work( l+1 ), 1, ssmin )
573 error = max( error, ssmin )
574 30 CONTINUE
575*
576 IF( abs( error ).LE.min( tola, tolb ) )
577 $ GO TO 50
578 END IF
579*
580* End of cycle loop
581*
582 40 CONTINUE
583*
584* The algorithm has not converged after MAXIT cycles.
585*
586 info = 1
587 GO TO 100
588*
589 50 CONTINUE
590*
591* If ERROR <= MIN(TOLA,TOLB), then the algorithm has converged.
592* Compute the generalized singular value pairs (ALPHA, BETA), and
593* set the triangular matrix R to array A.
594*
595 DO 60 i = 1, k
596 alpha( i ) = one
597 beta( i ) = zero
598 60 CONTINUE
599*
600 DO 70 i = 1, min( l, m-k )
601*
602 a1 = a( k+i, n-l+i )
603 b1 = b( i, n-l+i )
604 gamma = b1 / a1
605*
606 IF( (gamma.LE.hugenum).AND.(gamma.GE.-hugenum) ) THEN
607*
608* change sign if necessary
609*
610 IF( gamma.LT.zero ) THEN
611 CALL sscal( l-i+1, -one, b( i, n-l+i ), ldb )
612 IF( wantv )
613 $ CALL sscal( p, -one, v( 1, i ), 1 )
614 END IF
615*
616 CALL slartg( abs( gamma ), one, beta( k+i ),
617 $ alpha( k+i ),
618 $ rwk )
619*
620 IF( alpha( k+i ).GE.beta( k+i ) ) THEN
621 CALL sscal( l-i+1, one / alpha( k+i ), a( k+i,
622 $ n-l+i ),
623 $ lda )
624 ELSE
625 CALL sscal( l-i+1, one / beta( k+i ), b( i, n-l+i ),
626 $ ldb )
627 CALL scopy( l-i+1, b( i, n-l+i ), ldb, a( k+i,
628 $ n-l+i ),
629 $ lda )
630 END IF
631*
632 ELSE
633*
634 alpha( k+i ) = zero
635 beta( k+i ) = one
636 CALL scopy( l-i+1, b( i, n-l+i ), ldb, a( k+i, n-l+i ),
637 $ lda )
638*
639 END IF
640*
641 70 CONTINUE
642*
643* Post-assignment
644*
645 DO 80 i = m + 1, k + l
646 alpha( i ) = zero
647 beta( i ) = one
648 80 CONTINUE
649*
650 IF( k+l.LT.n ) THEN
651 DO 90 i = k + l + 1, n
652 alpha( i ) = zero
653 beta( i ) = zero
654 90 CONTINUE
655 END IF
656*
657 100 CONTINUE
658 ncycle = kcycle
659 RETURN
660*
661* End of STGSJA
662*
663 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine slags2(upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq)
SLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such tha...
Definition slags2.f:151
subroutine slapll(n, x, incx, y, incy, ssmin)
SLAPLL measures the linear dependence of two vectors.
Definition slapll.f:100
subroutine slartg(f, g, c, s, r)
SLARTG generates a plane rotation with real cosine and real sine.
Definition slartg.f90:111
subroutine slaset(uplo, m, n, alpha, beta, a, lda)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition slaset.f:108
subroutine srot(n, sx, incx, sy, incy, c, s)
SROT
Definition srot.f:92
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
subroutine stgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
STGSJA
Definition stgsja.f:376