LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cerrpo()

subroutine cerrpo ( character*3  path,
integer  nunit 
)

CERRPOX

Purpose:
 CERRPO tests the error exits for the COMPLEX routines
 for Hermitian positive definite matrices.

 Note that this file is used only when the XBLAS are available,
 otherwise cerrpo.f defines this subroutine.
Parameters
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 57 of file cerrpox.f.

58*
59* -- LAPACK test routine --
60* -- LAPACK is a software package provided by Univ. of Tennessee, --
61* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
62*
63* .. Scalar Arguments ..
64 CHARACTER*3 PATH
65 INTEGER NUNIT
66* ..
67*
68* =====================================================================
69*
70* .. Parameters ..
71 INTEGER NMAX
72 parameter( nmax = 4 )
73* ..
74* .. Local Scalars ..
75 CHARACTER EQ
76 CHARACTER*2 C2
77 INTEGER I, INFO, J, N_ERR_BNDS, NPARAMS
78 REAL ANRM, RCOND, BERR
79* ..
80* .. Local Arrays ..
81 REAL S( NMAX ), R( NMAX ), R1( NMAX ), R2( NMAX ),
82 $ ERR_BNDS_N( NMAX, 3 ), ERR_BNDS_C( NMAX, 3 ),
83 $ PARAMS( 1 )
84 COMPLEX A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
85 $ W( 2*NMAX ), X( NMAX )
86* ..
87* .. External Functions ..
88 LOGICAL LSAMEN
89 EXTERNAL lsamen
90* ..
91* .. External Subroutines ..
92 EXTERNAL alaesm, chkxer, cpbcon, cpbequ, cpbrfs, cpbtf2,
96* ..
97* .. Scalars in Common ..
98 LOGICAL LERR, OK
99 CHARACTER*32 SRNAMT
100 INTEGER INFOT, NOUT
101* ..
102* .. Common blocks ..
103 COMMON / infoc / infot, nout, ok, lerr
104 COMMON / srnamc / srnamt
105* ..
106* .. Intrinsic Functions ..
107 INTRINSIC cmplx, real
108* ..
109* .. Executable Statements ..
110*
111 nout = nunit
112 WRITE( nout, fmt = * )
113 c2 = path( 2: 3 )
114*
115* Set the variables to innocuous values.
116*
117 DO 20 j = 1, nmax
118 DO 10 i = 1, nmax
119 a( i, j ) = cmplx( 1. / real( i+j ), -1. / real( i+j ) )
120 af( i, j ) = cmplx( 1. / real( i+j ), -1. / real( i+j ) )
121 10 CONTINUE
122 b( j ) = 0.
123 r1( j ) = 0.
124 r2( j ) = 0.
125 w( j ) = 0.
126 x( j ) = 0.
127 s( j ) = 0.
128 20 CONTINUE
129 anrm = 1.
130 ok = .true.
131*
132* Test error exits of the routines that use the Cholesky
133* decomposition of a Hermitian positive definite matrix.
134*
135 IF( lsamen( 2, c2, 'PO' ) ) THEN
136*
137* CPOTRF
138*
139 srnamt = 'CPOTRF'
140 infot = 1
141 CALL cpotrf( '/', 0, a, 1, info )
142 CALL chkxer( 'CPOTRF', infot, nout, lerr, ok )
143 infot = 2
144 CALL cpotrf( 'U', -1, a, 1, info )
145 CALL chkxer( 'CPOTRF', infot, nout, lerr, ok )
146 infot = 4
147 CALL cpotrf( 'U', 2, a, 1, info )
148 CALL chkxer( 'CPOTRF', infot, nout, lerr, ok )
149*
150* CPOTF2
151*
152 srnamt = 'CPOTF2'
153 infot = 1
154 CALL cpotf2( '/', 0, a, 1, info )
155 CALL chkxer( 'CPOTF2', infot, nout, lerr, ok )
156 infot = 2
157 CALL cpotf2( 'U', -1, a, 1, info )
158 CALL chkxer( 'CPOTF2', infot, nout, lerr, ok )
159 infot = 4
160 CALL cpotf2( 'U', 2, a, 1, info )
161 CALL chkxer( 'CPOTF2', infot, nout, lerr, ok )
162*
163* CPOTRI
164*
165 srnamt = 'CPOTRI'
166 infot = 1
167 CALL cpotri( '/', 0, a, 1, info )
168 CALL chkxer( 'CPOTRI', infot, nout, lerr, ok )
169 infot = 2
170 CALL cpotri( 'U', -1, a, 1, info )
171 CALL chkxer( 'CPOTRI', infot, nout, lerr, ok )
172 infot = 4
173 CALL cpotri( 'U', 2, a, 1, info )
174 CALL chkxer( 'CPOTRI', infot, nout, lerr, ok )
175*
176* CPOTRS
177*
178 srnamt = 'CPOTRS'
179 infot = 1
180 CALL cpotrs( '/', 0, 0, a, 1, b, 1, info )
181 CALL chkxer( 'CPOTRS', infot, nout, lerr, ok )
182 infot = 2
183 CALL cpotrs( 'U', -1, 0, a, 1, b, 1, info )
184 CALL chkxer( 'CPOTRS', infot, nout, lerr, ok )
185 infot = 3
186 CALL cpotrs( 'U', 0, -1, a, 1, b, 1, info )
187 CALL chkxer( 'CPOTRS', infot, nout, lerr, ok )
188 infot = 5
189 CALL cpotrs( 'U', 2, 1, a, 1, b, 2, info )
190 CALL chkxer( 'CPOTRS', infot, nout, lerr, ok )
191 infot = 7
192 CALL cpotrs( 'U', 2, 1, a, 2, b, 1, info )
193 CALL chkxer( 'CPOTRS', infot, nout, lerr, ok )
194*
195* CPORFS
196*
197 srnamt = 'CPORFS'
198 infot = 1
199 CALL cporfs( '/', 0, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w, r,
200 $ info )
201 CALL chkxer( 'CPORFS', infot, nout, lerr, ok )
202 infot = 2
203 CALL cporfs( 'U', -1, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w, r,
204 $ info )
205 CALL chkxer( 'CPORFS', infot, nout, lerr, ok )
206 infot = 3
207 CALL cporfs( 'U', 0, -1, a, 1, af, 1, b, 1, x, 1, r1, r2, w, r,
208 $ info )
209 CALL chkxer( 'CPORFS', infot, nout, lerr, ok )
210 infot = 5
211 CALL cporfs( 'U', 2, 1, a, 1, af, 2, b, 2, x, 2, r1, r2, w, r,
212 $ info )
213 CALL chkxer( 'CPORFS', infot, nout, lerr, ok )
214 infot = 7
215 CALL cporfs( 'U', 2, 1, a, 2, af, 1, b, 2, x, 2, r1, r2, w, r,
216 $ info )
217 CALL chkxer( 'CPORFS', infot, nout, lerr, ok )
218 infot = 9
219 CALL cporfs( 'U', 2, 1, a, 2, af, 2, b, 1, x, 2, r1, r2, w, r,
220 $ info )
221 CALL chkxer( 'CPORFS', infot, nout, lerr, ok )
222 infot = 11
223 CALL cporfs( 'U', 2, 1, a, 2, af, 2, b, 2, x, 1, r1, r2, w, r,
224 $ info )
225 CALL chkxer( 'CPORFS', infot, nout, lerr, ok )
226*
227* CPORFSX
228*
229 n_err_bnds = 3
230 nparams = 0
231 srnamt = 'CPORFSX'
232 infot = 1
233 CALL cporfsx( '/', eq, 0, 0, a, 1, af, 1, s, b, 1, x, 1,
234 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
235 $ params, w, r, info )
236 CALL chkxer( 'CPORFSX', infot, nout, lerr, ok )
237 infot = 2
238 CALL cporfsx( 'U', '/', -1, 0, a, 1, af, 1, s, b, 1, x, 1,
239 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
240 $ params, w, r, info )
241 CALL chkxer( 'CPORFSX', infot, nout, lerr, ok )
242 eq = 'N'
243 infot = 3
244 CALL cporfsx( 'U', eq, -1, 0, a, 1, af, 1, s, b, 1, x, 1,
245 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
246 $ params, w, r, info )
247 CALL chkxer( 'CPORFSX', infot, nout, lerr, ok )
248 infot = 4
249 CALL cporfsx( 'U', eq, 0, -1, a, 1, af, 1, s, b, 1, x, 1,
250 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
251 $ params, w, r, info )
252 CALL chkxer( 'CPORFSX', infot, nout, lerr, ok )
253 infot = 6
254 CALL cporfsx( 'U', eq, 2, 1, a, 1, af, 2, s, b, 2, x, 2,
255 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
256 $ params, w, r, info )
257 CALL chkxer( 'CPORFSX', infot, nout, lerr, ok )
258 infot = 8
259 CALL cporfsx( 'U', eq, 2, 1, a, 2, af, 1, s, b, 2, x, 2,
260 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
261 $ params, w, r, info )
262 CALL chkxer( 'CPORFSX', infot, nout, lerr, ok )
263 infot = 11
264 CALL cporfsx( 'U', eq, 2, 1, a, 2, af, 2, s, b, 1, x, 2,
265 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
266 $ params, w, r, info )
267 CALL chkxer( 'CPORFSX', infot, nout, lerr, ok )
268 infot = 13
269 CALL cporfsx( 'U', eq, 2, 1, a, 2, af, 2, s, b, 2, x, 1,
270 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
271 $ params, w, r, info )
272 CALL chkxer( 'CPORFSX', infot, nout, lerr, ok )
273*
274* CPOCON
275*
276 srnamt = 'CPOCON'
277 infot = 1
278 CALL cpocon( '/', 0, a, 1, anrm, rcond, w, r, info )
279 CALL chkxer( 'CPOCON', infot, nout, lerr, ok )
280 infot = 2
281 CALL cpocon( 'U', -1, a, 1, anrm, rcond, w, r, info )
282 CALL chkxer( 'CPOCON', infot, nout, lerr, ok )
283 infot = 4
284 CALL cpocon( 'U', 2, a, 1, anrm, rcond, w, r, info )
285 CALL chkxer( 'CPOCON', infot, nout, lerr, ok )
286 infot = 5
287 CALL cpocon( 'U', 1, a, 1, -anrm, rcond, w, r, info )
288 CALL chkxer( 'CPOCON', infot, nout, lerr, ok )
289*
290* CPOEQU
291*
292 srnamt = 'CPOEQU'
293 infot = 1
294 CALL cpoequ( -1, a, 1, r1, rcond, anrm, info )
295 CALL chkxer( 'CPOEQU', infot, nout, lerr, ok )
296 infot = 3
297 CALL cpoequ( 2, a, 1, r1, rcond, anrm, info )
298 CALL chkxer( 'CPOEQU', infot, nout, lerr, ok )
299*
300* CPOEQUB
301*
302 srnamt = 'CPOEQUB'
303 infot = 1
304 CALL cpoequb( -1, a, 1, r1, rcond, anrm, info )
305 CALL chkxer( 'CPOEQUB', infot, nout, lerr, ok )
306 infot = 3
307 CALL cpoequb( 2, a, 1, r1, rcond, anrm, info )
308 CALL chkxer( 'CPOEQUB', infot, nout, lerr, ok )
309*
310* Test error exits of the routines that use the Cholesky
311* decomposition of a Hermitian positive definite packed matrix.
312*
313 ELSE IF( lsamen( 2, c2, 'PP' ) ) THEN
314*
315* CPPTRF
316*
317 srnamt = 'CPPTRF'
318 infot = 1
319 CALL cpptrf( '/', 0, a, info )
320 CALL chkxer( 'CPPTRF', infot, nout, lerr, ok )
321 infot = 2
322 CALL cpptrf( 'U', -1, a, info )
323 CALL chkxer( 'CPPTRF', infot, nout, lerr, ok )
324*
325* CPPTRI
326*
327 srnamt = 'CPPTRI'
328 infot = 1
329 CALL cpptri( '/', 0, a, info )
330 CALL chkxer( 'CPPTRI', infot, nout, lerr, ok )
331 infot = 2
332 CALL cpptri( 'U', -1, a, info )
333 CALL chkxer( 'CPPTRI', infot, nout, lerr, ok )
334*
335* CPPTRS
336*
337 srnamt = 'CPPTRS'
338 infot = 1
339 CALL cpptrs( '/', 0, 0, a, b, 1, info )
340 CALL chkxer( 'CPPTRS', infot, nout, lerr, ok )
341 infot = 2
342 CALL cpptrs( 'U', -1, 0, a, b, 1, info )
343 CALL chkxer( 'CPPTRS', infot, nout, lerr, ok )
344 infot = 3
345 CALL cpptrs( 'U', 0, -1, a, b, 1, info )
346 CALL chkxer( 'CPPTRS', infot, nout, lerr, ok )
347 infot = 6
348 CALL cpptrs( 'U', 2, 1, a, b, 1, info )
349 CALL chkxer( 'CPPTRS', infot, nout, lerr, ok )
350*
351* CPPRFS
352*
353 srnamt = 'CPPRFS'
354 infot = 1
355 CALL cpprfs( '/', 0, 0, a, af, b, 1, x, 1, r1, r2, w, r, info )
356 CALL chkxer( 'CPPRFS', infot, nout, lerr, ok )
357 infot = 2
358 CALL cpprfs( 'U', -1, 0, a, af, b, 1, x, 1, r1, r2, w, r,
359 $ info )
360 CALL chkxer( 'CPPRFS', infot, nout, lerr, ok )
361 infot = 3
362 CALL cpprfs( 'U', 0, -1, a, af, b, 1, x, 1, r1, r2, w, r,
363 $ info )
364 CALL chkxer( 'CPPRFS', infot, nout, lerr, ok )
365 infot = 7
366 CALL cpprfs( 'U', 2, 1, a, af, b, 1, x, 2, r1, r2, w, r, info )
367 CALL chkxer( 'CPPRFS', infot, nout, lerr, ok )
368 infot = 9
369 CALL cpprfs( 'U', 2, 1, a, af, b, 2, x, 1, r1, r2, w, r, info )
370 CALL chkxer( 'CPPRFS', infot, nout, lerr, ok )
371*
372* CPPCON
373*
374 srnamt = 'CPPCON'
375 infot = 1
376 CALL cppcon( '/', 0, a, anrm, rcond, w, r, info )
377 CALL chkxer( 'CPPCON', infot, nout, lerr, ok )
378 infot = 2
379 CALL cppcon( 'U', -1, a, anrm, rcond, w, r, info )
380 CALL chkxer( 'CPPCON', infot, nout, lerr, ok )
381 infot = 4
382 CALL cppcon( 'U', 1, a, -anrm, rcond, w, r, info )
383 CALL chkxer( 'CPPCON', infot, nout, lerr, ok )
384*
385* CPPEQU
386*
387 srnamt = 'CPPEQU'
388 infot = 1
389 CALL cppequ( '/', 0, a, r1, rcond, anrm, info )
390 CALL chkxer( 'CPPEQU', infot, nout, lerr, ok )
391 infot = 2
392 CALL cppequ( 'U', -1, a, r1, rcond, anrm, info )
393 CALL chkxer( 'CPPEQU', infot, nout, lerr, ok )
394*
395* Test error exits of the routines that use the Cholesky
396* decomposition of a Hermitian positive definite band matrix.
397*
398 ELSE IF( lsamen( 2, c2, 'PB' ) ) THEN
399*
400* CPBTRF
401*
402 srnamt = 'CPBTRF'
403 infot = 1
404 CALL cpbtrf( '/', 0, 0, a, 1, info )
405 CALL chkxer( 'CPBTRF', infot, nout, lerr, ok )
406 infot = 2
407 CALL cpbtrf( 'U', -1, 0, a, 1, info )
408 CALL chkxer( 'CPBTRF', infot, nout, lerr, ok )
409 infot = 3
410 CALL cpbtrf( 'U', 1, -1, a, 1, info )
411 CALL chkxer( 'CPBTRF', infot, nout, lerr, ok )
412 infot = 5
413 CALL cpbtrf( 'U', 2, 1, a, 1, info )
414 CALL chkxer( 'CPBTRF', infot, nout, lerr, ok )
415*
416* CPBTF2
417*
418 srnamt = 'CPBTF2'
419 infot = 1
420 CALL cpbtf2( '/', 0, 0, a, 1, info )
421 CALL chkxer( 'CPBTF2', infot, nout, lerr, ok )
422 infot = 2
423 CALL cpbtf2( 'U', -1, 0, a, 1, info )
424 CALL chkxer( 'CPBTF2', infot, nout, lerr, ok )
425 infot = 3
426 CALL cpbtf2( 'U', 1, -1, a, 1, info )
427 CALL chkxer( 'CPBTF2', infot, nout, lerr, ok )
428 infot = 5
429 CALL cpbtf2( 'U', 2, 1, a, 1, info )
430 CALL chkxer( 'CPBTF2', infot, nout, lerr, ok )
431*
432* CPBTRS
433*
434 srnamt = 'CPBTRS'
435 infot = 1
436 CALL cpbtrs( '/', 0, 0, 0, a, 1, b, 1, info )
437 CALL chkxer( 'CPBTRS', infot, nout, lerr, ok )
438 infot = 2
439 CALL cpbtrs( 'U', -1, 0, 0, a, 1, b, 1, info )
440 CALL chkxer( 'CPBTRS', infot, nout, lerr, ok )
441 infot = 3
442 CALL cpbtrs( 'U', 1, -1, 0, a, 1, b, 1, info )
443 CALL chkxer( 'CPBTRS', infot, nout, lerr, ok )
444 infot = 4
445 CALL cpbtrs( 'U', 0, 0, -1, a, 1, b, 1, info )
446 CALL chkxer( 'CPBTRS', infot, nout, lerr, ok )
447 infot = 6
448 CALL cpbtrs( 'U', 2, 1, 1, a, 1, b, 1, info )
449 CALL chkxer( 'CPBTRS', infot, nout, lerr, ok )
450 infot = 8
451 CALL cpbtrs( 'U', 2, 0, 1, a, 1, b, 1, info )
452 CALL chkxer( 'CPBTRS', infot, nout, lerr, ok )
453*
454* CPBRFS
455*
456 srnamt = 'CPBRFS'
457 infot = 1
458 CALL cpbrfs( '/', 0, 0, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w,
459 $ r, info )
460 CALL chkxer( 'CPBRFS', infot, nout, lerr, ok )
461 infot = 2
462 CALL cpbrfs( 'U', -1, 0, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w,
463 $ r, info )
464 CALL chkxer( 'CPBRFS', infot, nout, lerr, ok )
465 infot = 3
466 CALL cpbrfs( 'U', 1, -1, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w,
467 $ r, info )
468 CALL chkxer( 'CPBRFS', infot, nout, lerr, ok )
469 infot = 4
470 CALL cpbrfs( 'U', 0, 0, -1, a, 1, af, 1, b, 1, x, 1, r1, r2, w,
471 $ r, info )
472 CALL chkxer( 'CPBRFS', infot, nout, lerr, ok )
473 infot = 6
474 CALL cpbrfs( 'U', 2, 1, 1, a, 1, af, 2, b, 2, x, 2, r1, r2, w,
475 $ r, info )
476 CALL chkxer( 'CPBRFS', infot, nout, lerr, ok )
477 infot = 8
478 CALL cpbrfs( 'U', 2, 1, 1, a, 2, af, 1, b, 2, x, 2, r1, r2, w,
479 $ r, info )
480 CALL chkxer( 'CPBRFS', infot, nout, lerr, ok )
481 infot = 10
482 CALL cpbrfs( 'U', 2, 0, 1, a, 1, af, 1, b, 1, x, 2, r1, r2, w,
483 $ r, info )
484 CALL chkxer( 'CPBRFS', infot, nout, lerr, ok )
485 infot = 12
486 CALL cpbrfs( 'U', 2, 0, 1, a, 1, af, 1, b, 2, x, 1, r1, r2, w,
487 $ r, info )
488 CALL chkxer( 'CPBRFS', infot, nout, lerr, ok )
489*
490* CPBCON
491*
492 srnamt = 'CPBCON'
493 infot = 1
494 CALL cpbcon( '/', 0, 0, a, 1, anrm, rcond, w, r, info )
495 CALL chkxer( 'CPBCON', infot, nout, lerr, ok )
496 infot = 2
497 CALL cpbcon( 'U', -1, 0, a, 1, anrm, rcond, w, r, info )
498 CALL chkxer( 'CPBCON', infot, nout, lerr, ok )
499 infot = 3
500 CALL cpbcon( 'U', 1, -1, a, 1, anrm, rcond, w, r, info )
501 CALL chkxer( 'CPBCON', infot, nout, lerr, ok )
502 infot = 5
503 CALL cpbcon( 'U', 2, 1, a, 1, anrm, rcond, w, r, info )
504 CALL chkxer( 'CPBCON', infot, nout, lerr, ok )
505 infot = 6
506 CALL cpbcon( 'U', 1, 0, a, 1, -anrm, rcond, w, r, info )
507 CALL chkxer( 'CPBCON', infot, nout, lerr, ok )
508*
509* CPBEQU
510*
511 srnamt = 'CPBEQU'
512 infot = 1
513 CALL cpbequ( '/', 0, 0, a, 1, r1, rcond, anrm, info )
514 CALL chkxer( 'CPBEQU', infot, nout, lerr, ok )
515 infot = 2
516 CALL cpbequ( 'U', -1, 0, a, 1, r1, rcond, anrm, info )
517 CALL chkxer( 'CPBEQU', infot, nout, lerr, ok )
518 infot = 3
519 CALL cpbequ( 'U', 1, -1, a, 1, r1, rcond, anrm, info )
520 CALL chkxer( 'CPBEQU', infot, nout, lerr, ok )
521 infot = 5
522 CALL cpbequ( 'U', 2, 1, a, 1, r1, rcond, anrm, info )
523 CALL chkxer( 'CPBEQU', infot, nout, lerr, ok )
524 END IF
525*
526* Print a summary line.
527*
528 CALL alaesm( path, ok, nout )
529*
530 RETURN
531*
532* End of CERRPOX
533*
subroutine alaesm(path, ok, nout)
ALAESM
Definition alaesm.f:63
subroutine chkxer(srnamt, infot, nout, lerr, ok)
Definition cblat2.f:3224
logical function lsamen(n, ca, cb)
LSAMEN
Definition lsamen.f:74
subroutine cpbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)
CPBCON
Definition cpbcon.f:133
subroutine cpbequ(uplo, n, kd, ab, ldab, s, scond, amax, info)
CPBEQU
Definition cpbequ.f:130
subroutine cpbrfs(uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CPBRFS
Definition cpbrfs.f:189
subroutine cpbtf2(uplo, n, kd, ab, ldab, info)
CPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (un...
Definition cpbtf2.f:142
subroutine cpbtrf(uplo, n, kd, ab, ldab, info)
CPBTRF
Definition cpbtrf.f:142
subroutine cpbtrs(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
CPBTRS
Definition cpbtrs.f:121
subroutine cpocon(uplo, n, a, lda, anorm, rcond, work, rwork, info)
CPOCON
Definition cpocon.f:121
subroutine cpoequ(n, a, lda, s, scond, amax, info)
CPOEQU
Definition cpoequ.f:113
subroutine cpoequb(n, a, lda, s, scond, amax, info)
CPOEQUB
Definition cpoequb.f:119
subroutine cporfs(uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CPORFS
Definition cporfs.f:183
subroutine cporfsx(uplo, equed, n, nrhs, a, lda, af, ldaf, s, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
CPORFSX
Definition cporfsx.f:393
subroutine cpotf2(uplo, n, a, lda, info)
CPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblock...
Definition cpotf2.f:109
subroutine cpotrf(uplo, n, a, lda, info)
CPOTRF
Definition cpotrf.f:107
subroutine cpotri(uplo, n, a, lda, info)
CPOTRI
Definition cpotri.f:95
subroutine cpotrs(uplo, n, nrhs, a, lda, b, ldb, info)
CPOTRS
Definition cpotrs.f:110
subroutine cppcon(uplo, n, ap, anorm, rcond, work, rwork, info)
CPPCON
Definition cppcon.f:118
subroutine cppequ(uplo, n, ap, s, scond, amax, info)
CPPEQU
Definition cppequ.f:117
subroutine cpprfs(uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CPPRFS
Definition cpprfs.f:171
subroutine cpptrf(uplo, n, ap, info)
CPPTRF
Definition cpptrf.f:119
subroutine cpptri(uplo, n, ap, info)
CPPTRI
Definition cpptri.f:93
subroutine cpptrs(uplo, n, nrhs, ap, b, ldb, info)
CPPTRS
Definition cpptrs.f:108
Here is the call graph for this function: