LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cpoequ()

subroutine cpoequ ( integer n,
complex, dimension( lda, * ) a,
integer lda,
real, dimension( * ) s,
real scond,
real amax,
integer info )

CPOEQU

Download CPOEQU + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CPOEQU computes row and column scalings intended to equilibrate a
!> Hermitian positive definite matrix A and reduce its condition number
!> (with respect to the two-norm).  S contains the scale factors,
!> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
!> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This
!> choice of S puts the condition number of B within a factor N of the
!> smallest possible condition number over all possible diagonal
!> scalings.
!> 
Parameters
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]A
!>          A is COMPLEX array, dimension (LDA,N)
!>          The N-by-N Hermitian positive definite matrix whose scaling
!>          factors are to be computed.  Only the diagonal elements of A
!>          are referenced.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]S
!>          S is REAL array, dimension (N)
!>          If INFO = 0, S contains the scale factors for A.
!> 
[out]SCOND
!>          SCOND is REAL
!>          If INFO = 0, S contains the ratio of the smallest S(i) to
!>          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
!>          large nor too small, it is not worth scaling by S.
!> 
[out]AMAX
!>          AMAX is REAL
!>          Absolute value of largest matrix element.  If AMAX is very
!>          close to overflow or very close to underflow, the matrix
!>          should be scaled.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 110 of file cpoequ.f.

111*
112* -- LAPACK computational routine --
113* -- LAPACK is a software package provided by Univ. of Tennessee, --
114* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
115*
116* .. Scalar Arguments ..
117 INTEGER INFO, LDA, N
118 REAL AMAX, SCOND
119* ..
120* .. Array Arguments ..
121 REAL S( * )
122 COMPLEX A( LDA, * )
123* ..
124*
125* =====================================================================
126*
127* .. Parameters ..
128 REAL ZERO, ONE
129 parameter( zero = 0.0e+0, one = 1.0e+0 )
130* ..
131* .. Local Scalars ..
132 INTEGER I
133 REAL SMIN
134* ..
135* .. External Subroutines ..
136 EXTERNAL xerbla
137* ..
138* .. Intrinsic Functions ..
139 INTRINSIC max, min, real, sqrt
140* ..
141* .. Executable Statements ..
142*
143* Test the input parameters.
144*
145 info = 0
146 IF( n.LT.0 ) THEN
147 info = -1
148 ELSE IF( lda.LT.max( 1, n ) ) THEN
149 info = -3
150 END IF
151 IF( info.NE.0 ) THEN
152 CALL xerbla( 'CPOEQU', -info )
153 RETURN
154 END IF
155*
156* Quick return if possible
157*
158 IF( n.EQ.0 ) THEN
159 scond = one
160 amax = zero
161 RETURN
162 END IF
163*
164* Find the minimum and maximum diagonal elements.
165*
166 s( 1 ) = real( a( 1, 1 ) )
167 smin = s( 1 )
168 amax = s( 1 )
169 DO 10 i = 2, n
170 s( i ) = real( a( i, i ) )
171 smin = min( smin, s( i ) )
172 amax = max( amax, s( i ) )
173 10 CONTINUE
174*
175 IF( smin.LE.zero ) THEN
176*
177* Find the first non-positive diagonal element and return.
178*
179 DO 20 i = 1, n
180 IF( s( i ).LE.zero ) THEN
181 info = i
182 RETURN
183 END IF
184 20 CONTINUE
185 ELSE
186*
187* Set the scale factors to the reciprocals
188* of the diagonal elements.
189*
190 DO 30 i = 1, n
191 s( i ) = one / sqrt( s( i ) )
192 30 CONTINUE
193*
194* Compute SCOND = min(S(I)) / max(S(I))
195*
196 scond = sqrt( smin ) / sqrt( amax )
197 END IF
198 RETURN
199*
200* End of CPOEQU
201*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
Here is the call graph for this function:
Here is the caller graph for this function: