LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
|
subroutine cpotf2 | ( | character | uplo, |
integer | n, | ||
complex, dimension( lda, * ) | a, | ||
integer | lda, | ||
integer | info | ||
) |
CPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm).
Download CPOTF2 + dependencies [TGZ] [ZIP] [TXT]
CPOTF2 computes the Cholesky factorization of a complex Hermitian positive definite matrix A. The factorization has the form A = U**H * U , if UPLO = 'U', or A = L * L**H, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular. This is the unblocked version of the algorithm, calling Level 2 BLAS.
[in] | UPLO | UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored. = 'U': Upper triangular = 'L': Lower triangular |
[in] | N | N is INTEGER The order of the matrix A. N >= 0. |
[in,out] | A | A is COMPLEX array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading n by n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n by n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**H *U or A = L*L**H. |
[in] | LDA | LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). |
[out] | INFO | INFO is INTEGER = 0: successful exit < 0: if INFO = -k, the k-th argument had an illegal value > 0: if INFO = k, the leading principal minor of order k is not positive, and the factorization could not be completed. |
Definition at line 108 of file cpotf2.f.