LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cpbtf2()

subroutine cpbtf2 ( character  uplo,
integer  n,
integer  kd,
complex, dimension( ldab, * )  ab,
integer  ldab,
integer  info 
)

CPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (unblocked algorithm).

Download CPBTF2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CPBTF2 computes the Cholesky factorization of a complex Hermitian
 positive definite band matrix A.

 The factorization has the form
    A = U**H * U ,  if UPLO = 'U', or
    A = L  * L**H,  if UPLO = 'L',
 where U is an upper triangular matrix, U**H is the conjugate transpose
 of U, and L is lower triangular.

 This is the unblocked version of the algorithm, calling Level 2 BLAS.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]KD
          KD is INTEGER
          The number of super-diagonals of the matrix A if UPLO = 'U',
          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
[in,out]AB
          AB is COMPLEX array, dimension (LDAB,N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first KD+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).

          On exit, if INFO = 0, the triangular factor U or L from the
          Cholesky factorization A = U**H *U or A = L*L**H of the band
          matrix A, in the same storage format as A.
[in]LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -k, the k-th argument had an illegal value
          > 0: if INFO = k, the leading principal minor of order k
               is not positive, and the factorization could not be
               completed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  The band storage scheme is illustrated by the following example, when
  N = 6, KD = 2, and UPLO = 'U':

  On entry:                       On exit:

      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46
      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66

  Similarly, if UPLO = 'L' the format of A is as follows:

  On entry:                       On exit:

     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66
     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *
     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *

  Array elements marked * are not used by the routine.

Definition at line 141 of file cpbtf2.f.

142*
143* -- LAPACK computational routine --
144* -- LAPACK is a software package provided by Univ. of Tennessee, --
145* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
146*
147* .. Scalar Arguments ..
148 CHARACTER UPLO
149 INTEGER INFO, KD, LDAB, N
150* ..
151* .. Array Arguments ..
152 COMPLEX AB( LDAB, * )
153* ..
154*
155* =====================================================================
156*
157* .. Parameters ..
158 REAL ONE, ZERO
159 parameter( one = 1.0e+0, zero = 0.0e+0 )
160* ..
161* .. Local Scalars ..
162 LOGICAL UPPER
163 INTEGER J, KLD, KN
164 REAL AJJ
165* ..
166* .. External Functions ..
167 LOGICAL LSAME
168 EXTERNAL lsame
169* ..
170* .. External Subroutines ..
171 EXTERNAL cher, clacgv, csscal, xerbla
172* ..
173* .. Intrinsic Functions ..
174 INTRINSIC max, min, real, sqrt
175* ..
176* .. Executable Statements ..
177*
178* Test the input parameters.
179*
180 info = 0
181 upper = lsame( uplo, 'U' )
182 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
183 info = -1
184 ELSE IF( n.LT.0 ) THEN
185 info = -2
186 ELSE IF( kd.LT.0 ) THEN
187 info = -3
188 ELSE IF( ldab.LT.kd+1 ) THEN
189 info = -5
190 END IF
191 IF( info.NE.0 ) THEN
192 CALL xerbla( 'CPBTF2', -info )
193 RETURN
194 END IF
195*
196* Quick return if possible
197*
198 IF( n.EQ.0 )
199 $ RETURN
200*
201 kld = max( 1, ldab-1 )
202*
203 IF( upper ) THEN
204*
205* Compute the Cholesky factorization A = U**H * U.
206*
207 DO 10 j = 1, n
208*
209* Compute U(J,J) and test for non-positive-definiteness.
210*
211 ajj = real( ab( kd+1, j ) )
212 IF( ajj.LE.zero ) THEN
213 ab( kd+1, j ) = ajj
214 GO TO 30
215 END IF
216 ajj = sqrt( ajj )
217 ab( kd+1, j ) = ajj
218*
219* Compute elements J+1:J+KN of row J and update the
220* trailing submatrix within the band.
221*
222 kn = min( kd, n-j )
223 IF( kn.GT.0 ) THEN
224 CALL csscal( kn, one / ajj, ab( kd, j+1 ), kld )
225 CALL clacgv( kn, ab( kd, j+1 ), kld )
226 CALL cher( 'Upper', kn, -one, ab( kd, j+1 ), kld,
227 $ ab( kd+1, j+1 ), kld )
228 CALL clacgv( kn, ab( kd, j+1 ), kld )
229 END IF
230 10 CONTINUE
231 ELSE
232*
233* Compute the Cholesky factorization A = L*L**H.
234*
235 DO 20 j = 1, n
236*
237* Compute L(J,J) and test for non-positive-definiteness.
238*
239 ajj = real( ab( 1, j ) )
240 IF( ajj.LE.zero ) THEN
241 ab( 1, j ) = ajj
242 GO TO 30
243 END IF
244 ajj = sqrt( ajj )
245 ab( 1, j ) = ajj
246*
247* Compute elements J+1:J+KN of column J and update the
248* trailing submatrix within the band.
249*
250 kn = min( kd, n-j )
251 IF( kn.GT.0 ) THEN
252 CALL csscal( kn, one / ajj, ab( 2, j ), 1 )
253 CALL cher( 'Lower', kn, -one, ab( 2, j ), 1,
254 $ ab( 1, j+1 ), kld )
255 END IF
256 20 CONTINUE
257 END IF
258 RETURN
259*
260 30 CONTINUE
261 info = j
262 RETURN
263*
264* End of CPBTF2
265*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cher(uplo, n, alpha, x, incx, a, lda)
CHER
Definition cher.f:135
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
Definition clacgv.f:74
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine csscal(n, sa, cx, incx)
CSSCAL
Definition csscal.f:78
Here is the call graph for this function:
Here is the caller graph for this function: