LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
slaorhr_col_getrfnp2.f
Go to the documentation of this file.
1*> \brief \b SLAORHR_COL_GETRFNP2
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download DLAORHR_GETRF2NP + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaorhr_col_getrfnp2.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaorhr_col_getrfnp2.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaorhr_col_getrfnp2.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* RECURSIVE SUBROUTINE SLAORHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
20*
21* .. Scalar Arguments ..
22* INTEGER INFO, LDA, M, N
23* ..
24* .. Array Arguments ..
25* REAL A( LDA, * ), D( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> SLAORHR_COL_GETRFNP2 computes the modified LU factorization without
35*> pivoting of a real general M-by-N matrix A. The factorization has
36*> the form:
37*>
38*> A - S = L * U,
39*>
40*> where:
41*> S is a m-by-n diagonal sign matrix with the diagonal D, so that
42*> D(i) = S(i,i), 1 <= i <= min(M,N). The diagonal D is constructed
43*> as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing
44*> i-1 steps of Gaussian elimination. This means that the diagonal
45*> element at each step of "modified" Gaussian elimination is at
46*> least one in absolute value (so that division-by-zero not
47*> possible during the division by the diagonal element);
48*>
49*> L is a M-by-N lower triangular matrix with unit diagonal elements
50*> (lower trapezoidal if M > N);
51*>
52*> and U is a M-by-N upper triangular matrix
53*> (upper trapezoidal if M < N).
54*>
55*> This routine is an auxiliary routine used in the Householder
56*> reconstruction routine SORHR_COL. In SORHR_COL, this routine is
57*> applied to an M-by-N matrix A with orthonormal columns, where each
58*> element is bounded by one in absolute value. With the choice of
59*> the matrix S above, one can show that the diagonal element at each
60*> step of Gaussian elimination is the largest (in absolute value) in
61*> the column on or below the diagonal, so that no pivoting is required
62*> for numerical stability [1].
63*>
64*> For more details on the Householder reconstruction algorithm,
65*> including the modified LU factorization, see [1].
66*>
67*> This is the recursive version of the LU factorization algorithm.
68*> Denote A - S by B. The algorithm divides the matrix B into four
69*> submatrices:
70*>
71*> [ B11 | B12 ] where B11 is n1 by n1,
72*> B = [ -----|----- ] B21 is (m-n1) by n1,
73*> [ B21 | B22 ] B12 is n1 by n2,
74*> B22 is (m-n1) by n2,
75*> with n1 = min(m,n)/2, n2 = n-n1.
76*>
77*>
78*> The subroutine calls itself to factor B11, solves for B21,
79*> solves for B12, updates B22, then calls itself to factor B22.
80*>
81*> For more details on the recursive LU algorithm, see [2].
82*>
83*> SLAORHR_COL_GETRFNP2 is called to factorize a block by the blocked
84*> routine SLAORHR_COL_GETRFNP, which uses blocked code calling
85*> Level 3 BLAS to update the submatrix. However, SLAORHR_COL_GETRFNP2
86*> is self-sufficient and can be used without SLAORHR_COL_GETRFNP.
87*>
88*> [1] "Reconstructing Householder vectors from tall-skinny QR",
89*> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
90*> E. Solomonik, J. Parallel Distrib. Comput.,
91*> vol. 85, pp. 3-31, 2015.
92*>
93*> [2] "Recursion leads to automatic variable blocking for dense linear
94*> algebra algorithms", F. Gustavson, IBM J. of Res. and Dev.,
95*> vol. 41, no. 6, pp. 737-755, 1997.
96*> \endverbatim
97*
98* Arguments:
99* ==========
100*
101*> \param[in] M
102*> \verbatim
103*> M is INTEGER
104*> The number of rows of the matrix A. M >= 0.
105*> \endverbatim
106*>
107*> \param[in] N
108*> \verbatim
109*> N is INTEGER
110*> The number of columns of the matrix A. N >= 0.
111*> \endverbatim
112*>
113*> \param[in,out] A
114*> \verbatim
115*> A is REAL array, dimension (LDA,N)
116*> On entry, the M-by-N matrix to be factored.
117*> On exit, the factors L and U from the factorization
118*> A-S=L*U; the unit diagonal elements of L are not stored.
119*> \endverbatim
120*>
121*> \param[in] LDA
122*> \verbatim
123*> LDA is INTEGER
124*> The leading dimension of the array A. LDA >= max(1,M).
125*> \endverbatim
126*>
127*> \param[out] D
128*> \verbatim
129*> D is REAL array, dimension min(M,N)
130*> The diagonal elements of the diagonal M-by-N sign matrix S,
131*> D(i) = S(i,i), where 1 <= i <= min(M,N). The elements can
132*> be only plus or minus one.
133*> \endverbatim
134*>
135*> \param[out] INFO
136*> \verbatim
137*> INFO is INTEGER
138*> = 0: successful exit
139*> < 0: if INFO = -i, the i-th argument had an illegal value
140*> \endverbatim
141*>
142* Authors:
143* ========
144*
145*> \author Univ. of Tennessee
146*> \author Univ. of California Berkeley
147*> \author Univ. of Colorado Denver
148*> \author NAG Ltd.
149*
150*> \ingroup launhr_col_getrfnp2
151*
152*> \par Contributors:
153* ==================
154*>
155*> \verbatim
156*>
157*> November 2019, Igor Kozachenko,
158*> Computer Science Division,
159*> University of California, Berkeley
160*>
161*> \endverbatim
162*
163* =====================================================================
164 RECURSIVE SUBROUTINE slaorhr_col_getrfnp2( M, N, A, LDA, D,
165 $ INFO )
166 IMPLICIT NONE
167*
168* -- LAPACK computational routine --
169* -- LAPACK is a software package provided by Univ. of Tennessee, --
170* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
171*
172* .. Scalar Arguments ..
173 INTEGER info, lda, m, n
174* ..
175* .. Array Arguments ..
176 REAL a( lda, * ), d( * )
177* ..
178*
179* =====================================================================
180*
181* .. Parameters ..
182 REAL one
183 parameter( one = 1.0e+0 )
184* ..
185* .. Local Scalars ..
186 REAL sfmin
187 INTEGER i, iinfo, n1, n2
188* ..
189* .. External Functions ..
190 REAL slamch
191 EXTERNAL slamch
192* ..
193* .. External Subroutines ..
194 EXTERNAL sgemm, sscal, strsm, xerbla
195* ..
196* .. Intrinsic Functions ..
197 INTRINSIC abs, sign, max, min
198* ..
199* .. Executable Statements ..
200*
201* Test the input parameters
202*
203 info = 0
204 IF( m.LT.0 ) THEN
205 info = -1
206 ELSE IF( n.LT.0 ) THEN
207 info = -2
208 ELSE IF( lda.LT.max( 1, m ) ) THEN
209 info = -4
210 END IF
211 IF( info.NE.0 ) THEN
212 CALL xerbla( 'SLAORHR_COL_GETRFNP2', -info )
213 RETURN
214 END IF
215*
216* Quick return if possible
217*
218 IF( min( m, n ).EQ.0 )
219 $ RETURN
220
221 IF ( m.EQ.1 ) THEN
222*
223* One row case, (also recursion termination case),
224* use unblocked code
225*
226* Transfer the sign
227*
228 d( 1 ) = -sign( one, a( 1, 1 ) )
229*
230* Construct the row of U
231*
232 a( 1, 1 ) = a( 1, 1 ) - d( 1 )
233*
234 ELSE IF( n.EQ.1 ) THEN
235*
236* One column case, (also recursion termination case),
237* use unblocked code
238*
239* Transfer the sign
240*
241 d( 1 ) = -sign( one, a( 1, 1 ) )
242*
243* Construct the row of U
244*
245 a( 1, 1 ) = a( 1, 1 ) - d( 1 )
246*
247* Scale the elements 2:M of the column
248*
249* Determine machine safe minimum
250*
251 sfmin = slamch('S')
252*
253* Construct the subdiagonal elements of L
254*
255 IF( abs( a( 1, 1 ) ) .GE. sfmin ) THEN
256 CALL sscal( m-1, one / a( 1, 1 ), a( 2, 1 ), 1 )
257 ELSE
258 DO i = 2, m
259 a( i, 1 ) = a( i, 1 ) / a( 1, 1 )
260 END DO
261 END IF
262*
263 ELSE
264*
265* Divide the matrix B into four submatrices
266*
267 n1 = min( m, n ) / 2
268 n2 = n-n1
269
270*
271* Factor B11, recursive call
272*
273 CALL slaorhr_col_getrfnp2( n1, n1, a, lda, d, iinfo )
274*
275* Solve for B21
276*
277 CALL strsm( 'R', 'U', 'N', 'N', m-n1, n1, one, a, lda,
278 $ a( n1+1, 1 ), lda )
279*
280* Solve for B12
281*
282 CALL strsm( 'L', 'L', 'N', 'U', n1, n2, one, a, lda,
283 $ a( 1, n1+1 ), lda )
284*
285* Update B22, i.e. compute the Schur complement
286* B22 := B22 - B21*B12
287*
288 CALL sgemm( 'N', 'N', m-n1, n2, n1, -one, a( n1+1, 1 ), lda,
289 $ a( 1, n1+1 ), lda, one, a( n1+1, n1+1 ), lda )
290*
291* Factor B22, recursive call
292*
293 CALL slaorhr_col_getrfnp2( m-n1, n2, a( n1+1, n1+1 ), lda,
294 $ d( n1+1 ), iinfo )
295*
296 END IF
297 RETURN
298*
299* End of SLAORHR_COL_GETRFNP2
300*
301 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
SGEMM
Definition sgemm.f:188
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
recursive subroutine slaorhr_col_getrfnp2(m, n, a, lda, d, info)
SLAORHR_COL_GETRFNP2
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
subroutine strsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
STRSM
Definition strsm.f:181