141 $ capply, info, work, rwork )
150 INTEGER n, lda, ldaf, info
154 COMPLEX a( lda, * ), af( ldaf, * ), work( * )
155 REAL c( * ), rwork( * )
163 REAL ainvnm, anorm, tmp
177 INTRINSIC abs, max, real, aimag
183 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
189 notrans =
lsame( trans,
'N' )
190 IF ( .NOT. notrans .AND. .NOT.
lsame( trans,
'T' ) .AND. .NOT.
191 $
lsame( trans,
'C' ) )
THEN
193 ELSE IF( n.LT.0 )
THEN
195 ELSE IF( lda.LT.max( 1, n ) )
THEN
197 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
201 CALL xerbla(
'CLA_GERCOND_C', -info )
213 tmp = tmp + cabs1( a( i, j ) ) / c( j )
217 tmp = tmp + cabs1( a( i, j ) )
221 anorm = max( anorm, tmp )
228 tmp = tmp + cabs1( a( j, i ) ) / c( j )
232 tmp = tmp + cabs1( a( j, i ) )
236 anorm = max( anorm, tmp )
245 ELSE IF( anorm .EQ. 0.0e+0 )
THEN
255 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
262 work( i ) = work( i ) * rwork( i )
266 CALL cgetrs(
'No transpose', n, 1, af, ldaf, ipiv,
269 CALL cgetrs(
'Conjugate transpose', n, 1, af, ldaf, ipiv,
277 work( i ) = work( i ) * c( i )
286 work( i ) = work( i ) * c( i )
291 CALL cgetrs(
'Conjugate transpose', n, 1, af, ldaf, ipiv,
294 CALL cgetrs(
'No transpose', n, 1, af, ldaf, ipiv,
301 work( i ) = work( i ) * rwork( i )
309 IF( ainvnm .NE. 0.0e+0 )
subroutine xerbla(srname, info)
subroutine cgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)
CGETRS
real function cla_gercond_c(trans, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)
CLA_GERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for general matrices.
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
logical function lsame(ca, cb)
LSAME