LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dqrt01p | ( | integer | m, |
integer | n, | ||
double precision, dimension( lda, * ) | a, | ||
double precision, dimension( lda, * ) | af, | ||
double precision, dimension( lda, * ) | q, | ||
double precision, dimension( lda, * ) | r, | ||
integer | lda, | ||
double precision, dimension( * ) | tau, | ||
double precision, dimension( lwork ) | work, | ||
integer | lwork, | ||
double precision, dimension( * ) | rwork, | ||
double precision, dimension( * ) | result ) |
DQRT01P
!> !> DQRT01P tests DGEQRFP, which computes the QR factorization of an m-by-n !> matrix A, and partially tests DORGQR which forms the m-by-m !> orthogonal matrix Q. !> !> DQRT01P compares R with Q'*A, and checks that Q is orthogonal. !>
[in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
[in] | N | !> N is INTEGER !> The number of columns of the matrix A. N >= 0. !> |
[in] | A | !> A is DOUBLE PRECISION array, dimension (LDA,N) !> The m-by-n matrix A. !> |
[out] | AF | !> AF is DOUBLE PRECISION array, dimension (LDA,N) !> Details of the QR factorization of A, as returned by DGEQRFP. !> See DGEQRFP for further details. !> |
[out] | Q | !> Q is DOUBLE PRECISION array, dimension (LDA,M) !> The m-by-m orthogonal matrix Q. !> |
[out] | R | !> R is DOUBLE PRECISION array, dimension (LDA,max(M,N)) !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the arrays A, AF, Q and R. !> LDA >= max(M,N). !> |
[out] | TAU | !> TAU is DOUBLE PRECISION array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors, as returned !> by DGEQRFP. !> |
[out] | WORK | !> WORK is DOUBLE PRECISION array, dimension (LWORK) !> |
[in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> |
[out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (M) !> |
[out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (2) !> The test ratios: !> RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS ) !> RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) !> |
Definition at line 124 of file dqrt01p.f.