LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dgeqrfp()

subroutine dgeqrfp ( integer m,
integer n,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( * ) tau,
double precision, dimension( * ) work,
integer lwork,
integer info )

DGEQRFP

Download DGEQRFP + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DGEQR2P computes a QR factorization of a real M-by-N matrix A:
!>
!>    A = Q * ( R ),
!>            ( 0 )
!>
!> where:
!>
!>    Q is a M-by-M orthogonal matrix;
!>    R is an upper-triangular N-by-N matrix with nonnegative diagonal
!>    entries;
!>    0 is a (M-N)-by-N zero matrix, if M > N.
!>
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 
[in,out]A
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the M-by-N matrix A.
!>          On exit, the elements on and above the diagonal of the array
!>          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
!>          upper triangular if m >= n). The diagonal entries of R
!>          are nonnegative; the elements below the diagonal,
!>          with the array TAU, represent the orthogonal matrix Q as a
!>          product of min(m,n) elementary reflectors (see Further
!>          Details).
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 
[out]TAU
!>          TAU is DOUBLE PRECISION array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors (see Further
!>          Details).
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          LWORK >= 1, if MIN(M,N) = 0, and LWORK >= N, otherwise.
!>          For optimum performance LWORK >= N*NB, where NB is
!>          the optimal blocksize.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The matrix Q is represented as a product of elementary reflectors
!>
!>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**T
!>
!>  where tau is a real scalar, and v is a real vector with
!>  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
!>  and tau in TAU(i).
!>
!> See Lapack Working Note 203 for details
!> 

Definition at line 147 of file dgeqrfp.f.

148*
149* -- LAPACK computational routine --
150* -- LAPACK is a software package provided by Univ. of Tennessee, --
151* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
152*
153* .. Scalar Arguments ..
154 INTEGER INFO, LDA, LWORK, M, N
155* ..
156* .. Array Arguments ..
157 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
158* ..
159*
160* =====================================================================
161*
162* .. Local Scalars ..
163 LOGICAL LQUERY
164 INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKMIN, LWKOPT,
165 $ NB, NBMIN, NX
166* ..
167* .. External Subroutines ..
168 EXTERNAL dgeqr2p, dlarfb, dlarft, xerbla
169* ..
170* .. Intrinsic Functions ..
171 INTRINSIC max, min
172* ..
173* .. External Functions ..
174 INTEGER ILAENV
175 EXTERNAL ilaenv
176* ..
177* .. Executable Statements ..
178*
179* Test the input arguments
180*
181 info = 0
182 nb = ilaenv( 1, 'DGEQRF', ' ', m, n, -1, -1 )
183 k = min( m, n )
184 IF( k.EQ.0 ) THEN
185 lwkmin = 1
186 lwkopt = 1
187 ELSE
188 lwkmin = n
189 lwkopt = n*nb
190 END IF
191 work( 1 ) = lwkopt
192*
193 lquery = ( lwork.EQ.-1 )
194 IF( m.LT.0 ) THEN
195 info = -1
196 ELSE IF( n.LT.0 ) THEN
197 info = -2
198 ELSE IF( lda.LT.max( 1, m ) ) THEN
199 info = -4
200 ELSE IF( lwork.LT.lwkmin .AND. .NOT.lquery ) THEN
201 info = -7
202 END IF
203 IF( info.NE.0 ) THEN
204 CALL xerbla( 'DGEQRFP', -info )
205 RETURN
206 ELSE IF( lquery ) THEN
207 RETURN
208 END IF
209*
210* Quick return if possible
211*
212 IF( k.EQ.0 ) THEN
213 work( 1 ) = 1
214 RETURN
215 END IF
216*
217 nbmin = 2
218 nx = 0
219 iws = lwkmin
220 IF( nb.GT.1 .AND. nb.LT.k ) THEN
221*
222* Determine when to cross over from blocked to unblocked code.
223*
224 nx = max( 0, ilaenv( 3, 'DGEQRF', ' ', m, n, -1, -1 ) )
225 IF( nx.LT.k ) THEN
226*
227* Determine if workspace is large enough for blocked code.
228*
229 ldwork = n
230 iws = ldwork*nb
231 IF( lwork.LT.iws ) THEN
232*
233* Not enough workspace to use optimal NB: reduce NB and
234* determine the minimum value of NB.
235*
236 nb = lwork / ldwork
237 nbmin = max( 2, ilaenv( 2, 'DGEQRF', ' ', m, n, -1,
238 $ -1 ) )
239 END IF
240 END IF
241 END IF
242*
243 IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k ) THEN
244*
245* Use blocked code initially
246*
247 DO 10 i = 1, k - nx, nb
248 ib = min( k-i+1, nb )
249*
250* Compute the QR factorization of the current block
251* A(i:m,i:i+ib-1)
252*
253 CALL dgeqr2p( m-i+1, ib, a( i, i ), lda, tau( i ), work,
254 $ iinfo )
255 IF( i+ib.LE.n ) THEN
256*
257* Form the triangular factor of the block reflector
258* H = H(i) H(i+1) . . . H(i+ib-1)
259*
260 CALL dlarft( 'Forward', 'Columnwise', m-i+1, ib,
261 $ a( i, i ), lda, tau( i ), work, ldwork )
262*
263* Apply H**T to A(i:m,i+ib:n) from the left
264*
265 CALL dlarfb( 'Left', 'Transpose', 'Forward',
266 $ 'Columnwise', m-i+1, n-i-ib+1, ib,
267 $ a( i, i ), lda, work, ldwork, a( i, i+ib ),
268 $ lda, work( ib+1 ), ldwork )
269 END IF
270 10 CONTINUE
271 ELSE
272 i = 1
273 END IF
274*
275* Use unblocked code to factor the last or only block.
276*
277 IF( i.LE.k )
278 $ CALL dgeqr2p( m-i+1, n-i+1, a( i, i ), lda, tau( i ), work,
279 $ iinfo )
280*
281 work( 1 ) = iws
282 RETURN
283*
284* End of DGEQRFP
285*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dgeqr2p(m, n, a, lda, tau, work, info)
DGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elem...
Definition dgeqr2p.f:132
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine dlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
DLARFB applies a block reflector or its transpose to a general rectangular matrix.
Definition dlarfb.f:195
recursive subroutine dlarft(direct, storev, n, k, v, ldv, tau, t, ldt)
DLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition dlarft.f:162
Here is the call graph for this function:
Here is the caller graph for this function: