LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dgeqr2p()

subroutine dgeqr2p ( integer m,
integer n,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( * ) tau,
double precision, dimension( * ) work,
integer info )

DGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm.

Download DGEQR2P + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DGEQR2P computes a QR factorization of a real m-by-n matrix A:
!>
!>    A = Q * ( R ),
!>            ( 0 )
!>
!> where:
!>
!>    Q is a m-by-m orthogonal matrix;
!>    R is an upper-triangular n-by-n matrix with nonnegative diagonal
!>    entries;
!>    0 is a (m-n)-by-n zero matrix, if m > n.
!>
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 
[in,out]A
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the m by n matrix A.
!>          On exit, the elements on and above the diagonal of the array
!>          contain the min(m,n) by n upper trapezoidal matrix R (R is
!>          upper triangular if m >= n). The diagonal entries of R are
!>          nonnegative; the elements below the diagonal,
!>          with the array TAU, represent the orthogonal matrix Q as a
!>          product of elementary reflectors (see Further Details).
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 
[out]TAU
!>          TAU is DOUBLE PRECISION array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors (see Further
!>          Details).
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The matrix Q is represented as a product of elementary reflectors
!>
!>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**T
!>
!>  where tau is a real scalar, and v is a real vector with
!>  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
!>  and tau in TAU(i).
!>
!> See Lapack Working Note 203 for details
!> 

Definition at line 131 of file dgeqr2p.f.

132*
133* -- LAPACK computational routine --
134* -- LAPACK is a software package provided by Univ. of Tennessee, --
135* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
136*
137* .. Scalar Arguments ..
138 INTEGER INFO, LDA, M, N
139* ..
140* .. Array Arguments ..
141 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
142* ..
143*
144* =====================================================================
145*
146* .. Parameters ..
147 DOUBLE PRECISION ONE
148 parameter( one = 1.0d+0 )
149* ..
150* .. Local Scalars ..
151 INTEGER I, K
152* ..
153* .. External Subroutines ..
154 EXTERNAL dlarf1f, dlarfgp, xerbla
155* ..
156* .. Intrinsic Functions ..
157 INTRINSIC max, min
158* ..
159* .. Executable Statements ..
160*
161* Test the input arguments
162*
163 info = 0
164 IF( m.LT.0 ) THEN
165 info = -1
166 ELSE IF( n.LT.0 ) THEN
167 info = -2
168 ELSE IF( lda.LT.max( 1, m ) ) THEN
169 info = -4
170 END IF
171 IF( info.NE.0 ) THEN
172 CALL xerbla( 'DGEQR2P', -info )
173 RETURN
174 END IF
175*
176 k = min( m, n )
177*
178 DO 10 i = 1, k
179*
180* Generate elementary reflector H(i) to annihilate A(i+1:m,i)
181*
182 CALL dlarfgp( m-i+1, a( i, i ), a( min( i+1, m ), i ), 1,
183 $ tau( i ) )
184 IF( i.LT.n ) THEN
185*
186* Apply H(i) to A(i:m,i+1:n) from the left
187*
188 CALL dlarf1f( 'Left', m-i+1, n-i, a( i, i ), 1, tau( i ),
189 $ a( i, i+1 ), lda, work )
190 END IF
191 10 CONTINUE
192 RETURN
193*
194* End of DGEQR2P
195*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dlarf1f(side, m, n, v, incv, tau, c, ldc, work)
DLARF1F applies an elementary reflector to a general rectangular
Definition dlarf1f.f:157
subroutine dlarfgp(n, alpha, x, incx, tau)
DLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Definition dlarfgp.f:102
Here is the call graph for this function:
Here is the caller graph for this function: