LAPACK  3.10.1
LAPACK: Linear Algebra PACKage
cdrvge.f
Go to the documentation of this file.
1 *> \brief \b CDRVGE
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CDRVGE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
12 * A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
13 * RWORK, IWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NOUT, NRHS
18 * REAL THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER IWORK( * ), NVAL( * )
23 * REAL RWORK( * ), S( * )
24 * COMPLEX A( * ), AFAC( * ), ASAV( * ), B( * ),
25 * $ BSAV( * ), WORK( * ), X( * ), XACT( * )
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> CDRVGE tests the driver routines CGESV and -SVX.
35 *> \endverbatim
36 *
37 * Arguments:
38 * ==========
39 *
40 *> \param[in] DOTYPE
41 *> \verbatim
42 *> DOTYPE is LOGICAL array, dimension (NTYPES)
43 *> The matrix types to be used for testing. Matrices of type j
44 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
45 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
46 *> \endverbatim
47 *>
48 *> \param[in] NN
49 *> \verbatim
50 *> NN is INTEGER
51 *> The number of values of N contained in the vector NVAL.
52 *> \endverbatim
53 *>
54 *> \param[in] NVAL
55 *> \verbatim
56 *> NVAL is INTEGER array, dimension (NN)
57 *> The values of the matrix column dimension N.
58 *> \endverbatim
59 *>
60 *> \param[in] NRHS
61 *> \verbatim
62 *> NRHS is INTEGER
63 *> The number of right hand side vectors to be generated for
64 *> each linear system.
65 *> \endverbatim
66 *>
67 *> \param[in] THRESH
68 *> \verbatim
69 *> THRESH is REAL
70 *> The threshold value for the test ratios. A result is
71 *> included in the output file if RESULT >= THRESH. To have
72 *> every test ratio printed, use THRESH = 0.
73 *> \endverbatim
74 *>
75 *> \param[in] TSTERR
76 *> \verbatim
77 *> TSTERR is LOGICAL
78 *> Flag that indicates whether error exits are to be tested.
79 *> \endverbatim
80 *>
81 *> \param[in] NMAX
82 *> \verbatim
83 *> NMAX is INTEGER
84 *> The maximum value permitted for N, used in dimensioning the
85 *> work arrays.
86 *> \endverbatim
87 *>
88 *> \param[out] A
89 *> \verbatim
90 *> A is COMPLEX array, dimension (NMAX*NMAX)
91 *> \endverbatim
92 *>
93 *> \param[out] AFAC
94 *> \verbatim
95 *> AFAC is COMPLEX array, dimension (NMAX*NMAX)
96 *> \endverbatim
97 *>
98 *> \param[out] ASAV
99 *> \verbatim
100 *> ASAV is COMPLEX array, dimension (NMAX*NMAX)
101 *> \endverbatim
102 *>
103 *> \param[out] B
104 *> \verbatim
105 *> B is COMPLEX array, dimension (NMAX*NRHS)
106 *> \endverbatim
107 *>
108 *> \param[out] BSAV
109 *> \verbatim
110 *> BSAV is COMPLEX array, dimension (NMAX*NRHS)
111 *> \endverbatim
112 *>
113 *> \param[out] X
114 *> \verbatim
115 *> X is COMPLEX array, dimension (NMAX*NRHS)
116 *> \endverbatim
117 *>
118 *> \param[out] XACT
119 *> \verbatim
120 *> XACT is COMPLEX array, dimension (NMAX*NRHS)
121 *> \endverbatim
122 *>
123 *> \param[out] S
124 *> \verbatim
125 *> S is REAL array, dimension (2*NMAX)
126 *> \endverbatim
127 *>
128 *> \param[out] WORK
129 *> \verbatim
130 *> WORK is COMPLEX array, dimension
131 *> (NMAX*max(3,NRHS))
132 *> \endverbatim
133 *>
134 *> \param[out] RWORK
135 *> \verbatim
136 *> RWORK is REAL array, dimension (2*NRHS+NMAX)
137 *> \endverbatim
138 *>
139 *> \param[out] IWORK
140 *> \verbatim
141 *> IWORK is INTEGER array, dimension (NMAX)
142 *> \endverbatim
143 *>
144 *> \param[in] NOUT
145 *> \verbatim
146 *> NOUT is INTEGER
147 *> The unit number for output.
148 *> \endverbatim
149 *
150 * Authors:
151 * ========
152 *
153 *> \author Univ. of Tennessee
154 *> \author Univ. of California Berkeley
155 *> \author Univ. of Colorado Denver
156 *> \author NAG Ltd.
157 *
158 *> \ingroup complex_lin
159 *
160 * =====================================================================
161  SUBROUTINE cdrvge( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
162  $ A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
163  $ RWORK, IWORK, NOUT )
164 *
165 * -- LAPACK test routine --
166 * -- LAPACK is a software package provided by Univ. of Tennessee, --
167 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
168 *
169 * .. Scalar Arguments ..
170  LOGICAL TSTERR
171  INTEGER NMAX, NN, NOUT, NRHS
172  REAL THRESH
173 * ..
174 * .. Array Arguments ..
175  LOGICAL DOTYPE( * )
176  INTEGER IWORK( * ), NVAL( * )
177  REAL RWORK( * ), S( * )
178  COMPLEX A( * ), AFAC( * ), ASAV( * ), B( * ),
179  $ bsav( * ), work( * ), x( * ), xact( * )
180 * ..
181 *
182 * =====================================================================
183 *
184 * .. Parameters ..
185  REAL ONE, ZERO
186  PARAMETER ( ONE = 1.0e+0, zero = 0.0e+0 )
187  INTEGER NTYPES
188  parameter( ntypes = 11 )
189  INTEGER NTESTS
190  parameter( ntests = 7 )
191  INTEGER NTRAN
192  parameter( ntran = 3 )
193 * ..
194 * .. Local Scalars ..
195  LOGICAL EQUIL, NOFACT, PREFAC, TRFCON, ZEROT
196  CHARACTER DIST, EQUED, FACT, TRANS, TYPE, XTYPE
197  CHARACTER*3 PATH
198  INTEGER I, IEQUED, IFACT, IMAT, IN, INFO, IOFF, ITRAN,
199  $ izero, k, k1, kl, ku, lda, lwork, mode, n, nb,
200  $ nbmin, nerrs, nfact, nfail, nimat, nrun, nt
201  REAL AINVNM, AMAX, ANORM, ANORMI, ANORMO, CNDNUM,
202  $ COLCND, RCOND, RCONDC, RCONDI, RCONDO, ROLDC,
203  $ roldi, roldo, rowcnd, rpvgrw
204 * ..
205 * .. Local Arrays ..
206  CHARACTER EQUEDS( 4 ), FACTS( 3 ), TRANSS( NTRAN )
207  INTEGER ISEED( 4 ), ISEEDY( 4 )
208  REAL RDUM( 1 ), RESULT( NTESTS )
209 * ..
210 * .. External Functions ..
211  LOGICAL LSAME
212  REAL CLANGE, CLANTR, SGET06, SLAMCH
213  EXTERNAL lsame, clange, clantr, sget06, slamch
214 * ..
215 * .. External Subroutines ..
216  EXTERNAL aladhd, alaerh, alasvm, cerrvx, cgeequ, cgesv,
219  $ clatms, xlaenv
220 * ..
221 * .. Intrinsic Functions ..
222  INTRINSIC abs, cmplx, max
223 * ..
224 * .. Scalars in Common ..
225  LOGICAL LERR, OK
226  CHARACTER*32 SRNAMT
227  INTEGER INFOT, NUNIT
228 * ..
229 * .. Common blocks ..
230  COMMON / infoc / infot, nunit, ok, lerr
231  COMMON / srnamc / srnamt
232 * ..
233 * .. Data statements ..
234  DATA iseedy / 1988, 1989, 1990, 1991 /
235  DATA transs / 'N', 'T', 'C' /
236  DATA facts / 'F', 'N', 'E' /
237  DATA equeds / 'N', 'R', 'C', 'B' /
238 * ..
239 * .. Executable Statements ..
240 *
241 * Initialize constants and the random number seed.
242 *
243  path( 1: 1 ) = 'Complex precision'
244  path( 2: 3 ) = 'GE'
245  nrun = 0
246  nfail = 0
247  nerrs = 0
248  DO 10 i = 1, 4
249  iseed( i ) = iseedy( i )
250  10 CONTINUE
251 *
252 * Test the error exits
253 *
254  IF( tsterr )
255  $ CALL cerrvx( path, nout )
256  infot = 0
257 *
258 * Set the block size and minimum block size for testing.
259 *
260  nb = 1
261  nbmin = 2
262  CALL xlaenv( 1, nb )
263  CALL xlaenv( 2, nbmin )
264 *
265 * Do for each value of N in NVAL
266 *
267  DO 90 in = 1, nn
268  n = nval( in )
269  lda = max( n, 1 )
270  xtype = 'N'
271  nimat = ntypes
272  IF( n.LE.0 )
273  $ nimat = 1
274 *
275  DO 80 imat = 1, nimat
276 *
277 * Do the tests only if DOTYPE( IMAT ) is true.
278 *
279  IF( .NOT.dotype( imat ) )
280  $ GO TO 80
281 *
282 * Skip types 5, 6, or 7 if the matrix size is too small.
283 *
284  zerot = imat.GE.5 .AND. imat.LE.7
285  IF( zerot .AND. n.LT.imat-4 )
286  $ GO TO 80
287 *
288 * Set up parameters with CLATB4 and generate a test matrix
289 * with CLATMS.
290 *
291  CALL clatb4( path, imat, n, n, TYPE, kl, ku, anorm, mode,
292  $ cndnum, dist )
293  rcondc = one / cndnum
294 *
295  srnamt = 'CLATMS'
296  CALL clatms( n, n, dist, iseed, TYPE, rwork, mode, cndnum,
297  $ anorm, kl, ku, 'No packing', a, lda, work,
298  $ info )
299 *
300 * Check error code from CLATMS.
301 *
302  IF( info.NE.0 ) THEN
303  CALL alaerh( path, 'CLATMS', info, 0, ' ', n, n, -1, -1,
304  $ -1, imat, nfail, nerrs, nout )
305  GO TO 80
306  END IF
307 *
308 * For types 5-7, zero one or more columns of the matrix to
309 * test that INFO is returned correctly.
310 *
311  IF( zerot ) THEN
312  IF( imat.EQ.5 ) THEN
313  izero = 1
314  ELSE IF( imat.EQ.6 ) THEN
315  izero = n
316  ELSE
317  izero = n / 2 + 1
318  END IF
319  ioff = ( izero-1 )*lda
320  IF( imat.LT.7 ) THEN
321  DO 20 i = 1, n
322  a( ioff+i ) = zero
323  20 CONTINUE
324  ELSE
325  CALL claset( 'Full', n, n-izero+1, cmplx( zero ),
326  $ cmplx( zero ), a( ioff+1 ), lda )
327  END IF
328  ELSE
329  izero = 0
330  END IF
331 *
332 * Save a copy of the matrix A in ASAV.
333 *
334  CALL clacpy( 'Full', n, n, a, lda, asav, lda )
335 *
336  DO 70 iequed = 1, 4
337  equed = equeds( iequed )
338  IF( iequed.EQ.1 ) THEN
339  nfact = 3
340  ELSE
341  nfact = 1
342  END IF
343 *
344  DO 60 ifact = 1, nfact
345  fact = facts( ifact )
346  prefac = lsame( fact, 'F' )
347  nofact = lsame( fact, 'N' )
348  equil = lsame( fact, 'E' )
349 *
350  IF( zerot ) THEN
351  IF( prefac )
352  $ GO TO 60
353  rcondo = zero
354  rcondi = zero
355 *
356  ELSE IF( .NOT.nofact ) THEN
357 *
358 * Compute the condition number for comparison with
359 * the value returned by CGESVX (FACT = 'N' reuses
360 * the condition number from the previous iteration
361 * with FACT = 'F').
362 *
363  CALL clacpy( 'Full', n, n, asav, lda, afac, lda )
364  IF( equil .OR. iequed.GT.1 ) THEN
365 *
366 * Compute row and column scale factors to
367 * equilibrate the matrix A.
368 *
369  CALL cgeequ( n, n, afac, lda, s, s( n+1 ),
370  $ rowcnd, colcnd, amax, info )
371  IF( info.EQ.0 .AND. n.GT.0 ) THEN
372  IF( lsame( equed, 'R' ) ) THEN
373  rowcnd = zero
374  colcnd = one
375  ELSE IF( lsame( equed, 'C' ) ) THEN
376  rowcnd = one
377  colcnd = zero
378  ELSE IF( lsame( equed, 'B' ) ) THEN
379  rowcnd = zero
380  colcnd = zero
381  END IF
382 *
383 * Equilibrate the matrix.
384 *
385  CALL claqge( n, n, afac, lda, s, s( n+1 ),
386  $ rowcnd, colcnd, amax, equed )
387  END IF
388  END IF
389 *
390 * Save the condition number of the non-equilibrated
391 * system for use in CGET04.
392 *
393  IF( equil ) THEN
394  roldo = rcondo
395  roldi = rcondi
396  END IF
397 *
398 * Compute the 1-norm and infinity-norm of A.
399 *
400  anormo = clange( '1', n, n, afac, lda, rwork )
401  anormi = clange( 'I', n, n, afac, lda, rwork )
402 *
403 * Factor the matrix A.
404 *
405  srnamt = 'CGETRF'
406  CALL cgetrf( n, n, afac, lda, iwork, info )
407 *
408 * Form the inverse of A.
409 *
410  CALL clacpy( 'Full', n, n, afac, lda, a, lda )
411  lwork = nmax*max( 3, nrhs )
412  srnamt = 'CGETRI'
413  CALL cgetri( n, a, lda, iwork, work, lwork, info )
414 *
415 * Compute the 1-norm condition number of A.
416 *
417  ainvnm = clange( '1', n, n, a, lda, rwork )
418  IF( anormo.LE.zero .OR. ainvnm.LE.zero ) THEN
419  rcondo = one
420  ELSE
421  rcondo = ( one / anormo ) / ainvnm
422  END IF
423 *
424 * Compute the infinity-norm condition number of A.
425 *
426  ainvnm = clange( 'I', n, n, a, lda, rwork )
427  IF( anormi.LE.zero .OR. ainvnm.LE.zero ) THEN
428  rcondi = one
429  ELSE
430  rcondi = ( one / anormi ) / ainvnm
431  END IF
432  END IF
433 *
434  DO 50 itran = 1, ntran
435 *
436 * Do for each value of TRANS.
437 *
438  trans = transs( itran )
439  IF( itran.EQ.1 ) THEN
440  rcondc = rcondo
441  ELSE
442  rcondc = rcondi
443  END IF
444 *
445 * Restore the matrix A.
446 *
447  CALL clacpy( 'Full', n, n, asav, lda, a, lda )
448 *
449 * Form an exact solution and set the right hand side.
450 *
451  srnamt = 'CLARHS'
452  CALL clarhs( path, xtype, 'Full', trans, n, n, kl,
453  $ ku, nrhs, a, lda, xact, lda, b, lda,
454  $ iseed, info )
455  xtype = 'C'
456  CALL clacpy( 'Full', n, nrhs, b, lda, bsav, lda )
457 *
458  IF( nofact .AND. itran.EQ.1 ) THEN
459 *
460 * --- Test CGESV ---
461 *
462 * Compute the LU factorization of the matrix and
463 * solve the system.
464 *
465  CALL clacpy( 'Full', n, n, a, lda, afac, lda )
466  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
467 *
468  srnamt = 'CGESV '
469  CALL cgesv( n, nrhs, afac, lda, iwork, x, lda,
470  $ info )
471 *
472 * Check error code from CGESV .
473 *
474  IF( info.NE.izero )
475  $ CALL alaerh( path, 'CGESV ', info, izero,
476  $ ' ', n, n, -1, -1, nrhs, imat,
477  $ nfail, nerrs, nout )
478 *
479 * Reconstruct matrix from factors and compute
480 * residual.
481 *
482  CALL cget01( n, n, a, lda, afac, lda, iwork,
483  $ rwork, result( 1 ) )
484  nt = 1
485  IF( izero.EQ.0 ) THEN
486 *
487 * Compute residual of the computed solution.
488 *
489  CALL clacpy( 'Full', n, nrhs, b, lda, work,
490  $ lda )
491  CALL cget02( 'No transpose', n, n, nrhs, a,
492  $ lda, x, lda, work, lda, rwork,
493  $ result( 2 ) )
494 *
495 * Check solution from generated exact solution.
496 *
497  CALL cget04( n, nrhs, x, lda, xact, lda,
498  $ rcondc, result( 3 ) )
499  nt = 3
500  END IF
501 *
502 * Print information about the tests that did not
503 * pass the threshold.
504 *
505  DO 30 k = 1, nt
506  IF( result( k ).GE.thresh ) THEN
507  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
508  $ CALL aladhd( nout, path )
509  WRITE( nout, fmt = 9999 )'CGESV ', n,
510  $ imat, k, result( k )
511  nfail = nfail + 1
512  END IF
513  30 CONTINUE
514  nrun = nrun + nt
515  END IF
516 *
517 * --- Test CGESVX ---
518 *
519  IF( .NOT.prefac )
520  $ CALL claset( 'Full', n, n, cmplx( zero ),
521  $ cmplx( zero ), afac, lda )
522  CALL claset( 'Full', n, nrhs, cmplx( zero ),
523  $ cmplx( zero ), x, lda )
524  IF( iequed.GT.1 .AND. n.GT.0 ) THEN
525 *
526 * Equilibrate the matrix if FACT = 'F' and
527 * EQUED = 'R', 'C', or 'B'.
528 *
529  CALL claqge( n, n, a, lda, s, s( n+1 ), rowcnd,
530  $ colcnd, amax, equed )
531  END IF
532 *
533 * Solve the system and compute the condition number
534 * and error bounds using CGESVX.
535 *
536  srnamt = 'CGESVX'
537  CALL cgesvx( fact, trans, n, nrhs, a, lda, afac,
538  $ lda, iwork, equed, s, s( n+1 ), b,
539  $ lda, x, lda, rcond, rwork,
540  $ rwork( nrhs+1 ), work,
541  $ rwork( 2*nrhs+1 ), info )
542 *
543 * Check the error code from CGESVX.
544 *
545  IF( info.NE.izero )
546  $ CALL alaerh( path, 'CGESVX', info, izero,
547  $ fact // trans, n, n, -1, -1, nrhs,
548  $ imat, nfail, nerrs, nout )
549 *
550 * Compare RWORK(2*NRHS+1) from CGESVX with the
551 * computed reciprocal pivot growth factor RPVGRW
552 *
553  IF( info.NE.0 .AND. info.LE.n) THEN
554  rpvgrw = clantr( 'M', 'U', 'N', info, info,
555  $ afac, lda, rdum )
556  IF( rpvgrw.EQ.zero ) THEN
557  rpvgrw = one
558  ELSE
559  rpvgrw = clange( 'M', n, info, a, lda,
560  $ rdum ) / rpvgrw
561  END IF
562  ELSE
563  rpvgrw = clantr( 'M', 'U', 'N', n, n, afac, lda,
564  $ rdum )
565  IF( rpvgrw.EQ.zero ) THEN
566  rpvgrw = one
567  ELSE
568  rpvgrw = clange( 'M', n, n, a, lda, rdum ) /
569  $ rpvgrw
570  END IF
571  END IF
572  result( 7 ) = abs( rpvgrw-rwork( 2*nrhs+1 ) ) /
573  $ max( rwork( 2*nrhs+1 ), rpvgrw ) /
574  $ slamch( 'E' )
575 *
576  IF( .NOT.prefac ) THEN
577 *
578 * Reconstruct matrix from factors and compute
579 * residual.
580 *
581  CALL cget01( n, n, a, lda, afac, lda, iwork,
582  $ rwork( 2*nrhs+1 ), result( 1 ) )
583  k1 = 1
584  ELSE
585  k1 = 2
586  END IF
587 *
588  IF( info.EQ.0 ) THEN
589  trfcon = .false.
590 *
591 * Compute residual of the computed solution.
592 *
593  CALL clacpy( 'Full', n, nrhs, bsav, lda, work,
594  $ lda )
595  CALL cget02( trans, n, n, nrhs, asav, lda, x,
596  $ lda, work, lda, rwork( 2*nrhs+1 ),
597  $ result( 2 ) )
598 *
599 * Check solution from generated exact solution.
600 *
601  IF( nofact .OR. ( prefac .AND. lsame( equed,
602  $ 'N' ) ) ) THEN
603  CALL cget04( n, nrhs, x, lda, xact, lda,
604  $ rcondc, result( 3 ) )
605  ELSE
606  IF( itran.EQ.1 ) THEN
607  roldc = roldo
608  ELSE
609  roldc = roldi
610  END IF
611  CALL cget04( n, nrhs, x, lda, xact, lda,
612  $ roldc, result( 3 ) )
613  END IF
614 *
615 * Check the error bounds from iterative
616 * refinement.
617 *
618  CALL cget07( trans, n, nrhs, asav, lda, b, lda,
619  $ x, lda, xact, lda, rwork, .true.,
620  $ rwork( nrhs+1 ), result( 4 ) )
621  ELSE
622  trfcon = .true.
623  END IF
624 *
625 * Compare RCOND from CGESVX with the computed value
626 * in RCONDC.
627 *
628  result( 6 ) = sget06( rcond, rcondc )
629 *
630 * Print information about the tests that did not pass
631 * the threshold.
632 *
633  IF( .NOT.trfcon ) THEN
634  DO 40 k = k1, ntests
635  IF( result( k ).GE.thresh ) THEN
636  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
637  $ CALL aladhd( nout, path )
638  IF( prefac ) THEN
639  WRITE( nout, fmt = 9997 )'CGESVX',
640  $ fact, trans, n, equed, imat, k,
641  $ result( k )
642  ELSE
643  WRITE( nout, fmt = 9998 )'CGESVX',
644  $ fact, trans, n, imat, k, result( k )
645  END IF
646  nfail = nfail + 1
647  END IF
648  40 CONTINUE
649  nrun = nrun + ntests - k1 + 1
650  ELSE
651  IF( result( 1 ).GE.thresh .AND. .NOT.prefac )
652  $ THEN
653  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
654  $ CALL aladhd( nout, path )
655  IF( prefac ) THEN
656  WRITE( nout, fmt = 9997 )'CGESVX', fact,
657  $ trans, n, equed, imat, 1, result( 1 )
658  ELSE
659  WRITE( nout, fmt = 9998 )'CGESVX', fact,
660  $ trans, n, imat, 1, result( 1 )
661  END IF
662  nfail = nfail + 1
663  nrun = nrun + 1
664  END IF
665  IF( result( 6 ).GE.thresh ) THEN
666  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
667  $ CALL aladhd( nout, path )
668  IF( prefac ) THEN
669  WRITE( nout, fmt = 9997 )'CGESVX', fact,
670  $ trans, n, equed, imat, 6, result( 6 )
671  ELSE
672  WRITE( nout, fmt = 9998 )'CGESVX', fact,
673  $ trans, n, imat, 6, result( 6 )
674  END IF
675  nfail = nfail + 1
676  nrun = nrun + 1
677  END IF
678  IF( result( 7 ).GE.thresh ) THEN
679  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
680  $ CALL aladhd( nout, path )
681  IF( prefac ) THEN
682  WRITE( nout, fmt = 9997 )'CGESVX', fact,
683  $ trans, n, equed, imat, 7, result( 7 )
684  ELSE
685  WRITE( nout, fmt = 9998 )'CGESVX', fact,
686  $ trans, n, imat, 7, result( 7 )
687  END IF
688  nfail = nfail + 1
689  nrun = nrun + 1
690  END IF
691 *
692  END IF
693 *
694  50 CONTINUE
695  60 CONTINUE
696  70 CONTINUE
697  80 CONTINUE
698  90 CONTINUE
699 *
700 * Print a summary of the results.
701 *
702  CALL alasvm( path, nout, nfail, nrun, nerrs )
703 *
704  9999 FORMAT( 1x, a, ', N =', i5, ', type ', i2, ', test(', i2, ') =',
705  $ g12.5 )
706  9998 FORMAT( 1x, a, ', FACT=''', a1, ''', TRANS=''', a1, ''', N=', i5,
707  $ ', type ', i2, ', test(', i1, ')=', g12.5 )
708  9997 FORMAT( 1x, a, ', FACT=''', a1, ''', TRANS=''', a1, ''', N=', i5,
709  $ ', EQUED=''', a1, ''', type ', i2, ', test(', i1, ')=',
710  $ g12.5 )
711  RETURN
712 *
713 * End of CDRVGE
714 *
715  END
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine aladhd(IOUNIT, PATH)
ALADHD
Definition: aladhd.f:90
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:208
subroutine cget02(TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CGET02
Definition: cget02.f:134
subroutine cget01(M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK, RESID)
CGET01
Definition: cget01.f:108
subroutine cdrvge(DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK, RWORK, IWORK, NOUT)
CDRVGE
Definition: cdrvge.f:164
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:121
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:102
subroutine cget07(TRANS, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, CHKFERR, BERR, RESLTS)
CGET07
Definition: cget07.f:166
subroutine cerrvx(PATH, NUNIT)
CERRVX
Definition: cerrvx.f:55
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:332
subroutine claqge(M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, EQUED)
CLAQGE scales a general rectangular matrix, using row and column scaling factors computed by sgeequ.
Definition: claqge.f:143
subroutine cgeequ(M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFO)
CGEEQU
Definition: cgeequ.f:140
subroutine cgetri(N, A, LDA, IPIV, WORK, LWORK, INFO)
CGETRI
Definition: cgetri.f:114
subroutine cgetrf(M, N, A, LDA, IPIV, INFO)
CGETRF
Definition: cgetrf.f:108
subroutine cgesvx(FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)
CGESVX computes the solution to system of linear equations A * X = B for GE matrices
Definition: cgesvx.f:350
subroutine cgesv(N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CGESV computes the solution to system of linear equations A * X = B for GE matrices (simple driver)
Definition: cgesv.f:122
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: claset.f:106
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103