LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cget07()

subroutine cget07 ( character trans,
integer n,
integer nrhs,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( ldb, * ) b,
integer ldb,
complex, dimension( ldx, * ) x,
integer ldx,
complex, dimension( ldxact, * ) xact,
integer ldxact,
real, dimension( * ) ferr,
logical chkferr,
real, dimension( * ) berr,
real, dimension( * ) reslts )

CGET07

Purpose:
!>
!> CGET07 tests the error bounds from iterative refinement for the
!> computed solution to a system of equations op(A)*X = B, where A is a
!> general n by n matrix and op(A) = A or A**T, depending on TRANS.
!>
!> RESLTS(1) = test of the error bound
!>           = norm(X - XACT) / ( norm(X) * FERR )
!>
!> A large value is returned if this ratio is not less than one.
!>
!> RESLTS(2) = residual from the iterative refinement routine
!>           = the maximum of BERR / ( (n+1)*EPS + (*) ), where
!>             (*) = (n+1)*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
!> 
Parameters
[in]TRANS
!>          TRANS is CHARACTER*1
!>          Specifies the form of the system of equations.
!>          = 'N':  A * X = B     (No transpose)
!>          = 'T':  A**T * X = B  (Transpose)
!>          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
!> 
[in]N
!>          N is INTEGER
!>          The number of rows of the matrices X and XACT.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of columns of the matrices X and XACT.  NRHS >= 0.
!> 
[in]A
!>          A is COMPLEX array, dimension (LDA,N)
!>          The original n by n matrix A.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in]B
!>          B is COMPLEX array, dimension (LDB,NRHS)
!>          The right hand side vectors for the system of linear
!>          equations.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[in]X
!>          X is COMPLEX array, dimension (LDX,NRHS)
!>          The computed solution vectors.  Each vector is stored as a
!>          column of the matrix X.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 
[in]XACT
!>          XACT is COMPLEX array, dimension (LDX,NRHS)
!>          The exact solution vectors.  Each vector is stored as a
!>          column of the matrix XACT.
!> 
[in]LDXACT
!>          LDXACT is INTEGER
!>          The leading dimension of the array XACT.  LDXACT >= max(1,N).
!> 
[in]FERR
!>          FERR is REAL array, dimension (NRHS)
!>          The estimated forward error bounds for each solution vector
!>          X.  If XTRUE is the true solution, FERR bounds the magnitude
!>          of the largest entry in (X - XTRUE) divided by the magnitude
!>          of the largest entry in X.
!> 
[in]CHKFERR
!>          CHKFERR is LOGICAL
!>          Set to .TRUE. to check FERR, .FALSE. not to check FERR.
!>          When the test system is ill-conditioned, the 
!>          solution in XACT may be incorrect.
!> 
[in]BERR
!>          BERR is REAL array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector (i.e., the smallest relative change in any entry of A
!>          or B that makes X an exact solution).
!> 
[out]RESLTS
!>          RESLTS is REAL array, dimension (2)
!>          The maximum over the NRHS solution vectors of the ratios:
!>          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
!>          RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 164 of file cget07.f.

166*
167* -- LAPACK test routine --
168* -- LAPACK is a software package provided by Univ. of Tennessee, --
169* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
170*
171* .. Scalar Arguments ..
172 CHARACTER TRANS
173 LOGICAL CHKFERR
174 INTEGER LDA, LDB, LDX, LDXACT, N, NRHS
175* ..
176* .. Array Arguments ..
177 REAL BERR( * ), FERR( * ), RESLTS( * )
178 COMPLEX A( LDA, * ), B( LDB, * ), X( LDX, * ),
179 $ XACT( LDXACT, * )
180* ..
181*
182* =====================================================================
183*
184* .. Parameters ..
185 REAL ZERO, ONE
186 parameter( zero = 0.0e+0, one = 1.0e+0 )
187* ..
188* .. Local Scalars ..
189 LOGICAL NOTRAN
190 INTEGER I, IMAX, J, K
191 REAL AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
192 COMPLEX ZDUM
193* ..
194* .. External Functions ..
195 LOGICAL LSAME
196 INTEGER ICAMAX
197 REAL SLAMCH
198 EXTERNAL lsame, icamax, slamch
199* ..
200* .. Intrinsic Functions ..
201 INTRINSIC abs, aimag, max, min, real
202* ..
203* .. Statement Functions ..
204 REAL CABS1
205* ..
206* .. Statement Function definitions ..
207 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
208* ..
209* .. Executable Statements ..
210*
211* Quick exit if N = 0 or NRHS = 0.
212*
213 IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
214 reslts( 1 ) = zero
215 reslts( 2 ) = zero
216 RETURN
217 END IF
218*
219 eps = slamch( 'Epsilon' )
220 unfl = slamch( 'Safe minimum' )
221 ovfl = one / unfl
222 notran = lsame( trans, 'N' )
223*
224* Test 1: Compute the maximum of
225* norm(X - XACT) / ( norm(X) * FERR )
226* over all the vectors X and XACT using the infinity-norm.
227*
228 errbnd = zero
229 IF( chkferr ) THEN
230 DO 30 j = 1, nrhs
231 imax = icamax( n, x( 1, j ), 1 )
232 xnorm = max( cabs1( x( imax, j ) ), unfl )
233 diff = zero
234 DO 10 i = 1, n
235 diff = max( diff, cabs1( x( i, j )-xact( i, j ) ) )
236 10 CONTINUE
237*
238 IF( xnorm.GT.one ) THEN
239 GO TO 20
240 ELSE IF( diff.LE.ovfl*xnorm ) THEN
241 GO TO 20
242 ELSE
243 errbnd = one / eps
244 GO TO 30
245 END IF
246*
247 20 CONTINUE
248 IF( diff / xnorm.LE.ferr( j ) ) THEN
249 errbnd = max( errbnd, ( diff / xnorm ) / ferr( j ) )
250 ELSE
251 errbnd = one / eps
252 END IF
253 30 CONTINUE
254 END IF
255 reslts( 1 ) = errbnd
256*
257* Test 2: Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where
258* (*) = (n+1)*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
259*
260 DO 70 k = 1, nrhs
261 DO 60 i = 1, n
262 tmp = cabs1( b( i, k ) )
263 IF( notran ) THEN
264 DO 40 j = 1, n
265 tmp = tmp + cabs1( a( i, j ) )*cabs1( x( j, k ) )
266 40 CONTINUE
267 ELSE
268 DO 50 j = 1, n
269 tmp = tmp + cabs1( a( j, i ) )*cabs1( x( j, k ) )
270 50 CONTINUE
271 END IF
272 IF( i.EQ.1 ) THEN
273 axbi = tmp
274 ELSE
275 axbi = min( axbi, tmp )
276 END IF
277 60 CONTINUE
278 tmp = berr( k ) / ( ( n+1 )*eps+( n+1 )*unfl /
279 $ max( axbi, ( n+1 )*unfl ) )
280 IF( k.EQ.1 ) THEN
281 reslts( 2 ) = tmp
282 ELSE
283 reslts( 2 ) = max( reslts( 2 ), tmp )
284 END IF
285 70 CONTINUE
286*
287 RETURN
288*
289* End of CGET07
290*
integer function icamax(n, cx, incx)
ICAMAX
Definition icamax.f:71
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the caller graph for this function: