LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cgetri.f
Go to the documentation of this file.
1*> \brief \b CGETRI
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CGETRI + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgetri.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgetri.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgetri.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
22*
23* .. Scalar Arguments ..
24* INTEGER INFO, LDA, LWORK, N
25* ..
26* .. Array Arguments ..
27* INTEGER IPIV( * )
28* COMPLEX A( LDA, * ), WORK( * )
29* ..
30*
31*
32*> \par Purpose:
33* =============
34*>
35*> \verbatim
36*>
37*> CGETRI computes the inverse of a matrix using the LU factorization
38*> computed by CGETRF.
39*>
40*> This method inverts U and then computes inv(A) by solving the system
41*> inv(A)*L = inv(U) for inv(A).
42*> \endverbatim
43*
44* Arguments:
45* ==========
46*
47*> \param[in] N
48*> \verbatim
49*> N is INTEGER
50*> The order of the matrix A. N >= 0.
51*> \endverbatim
52*>
53*> \param[in,out] A
54*> \verbatim
55*> A is COMPLEX array, dimension (LDA,N)
56*> On entry, the factors L and U from the factorization
57*> A = P*L*U as computed by CGETRF.
58*> On exit, if INFO = 0, the inverse of the original matrix A.
59*> \endverbatim
60*>
61*> \param[in] LDA
62*> \verbatim
63*> LDA is INTEGER
64*> The leading dimension of the array A. LDA >= max(1,N).
65*> \endverbatim
66*>
67*> \param[in] IPIV
68*> \verbatim
69*> IPIV is INTEGER array, dimension (N)
70*> The pivot indices from CGETRF; for 1<=i<=N, row i of the
71*> matrix was interchanged with row IPIV(i).
72*> \endverbatim
73*>
74*> \param[out] WORK
75*> \verbatim
76*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
77*> On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
78*> \endverbatim
79*>
80*> \param[in] LWORK
81*> \verbatim
82*> LWORK is INTEGER
83*> The dimension of the array WORK. LWORK >= max(1,N).
84*> For optimal performance LWORK >= N*NB, where NB is
85*> the optimal blocksize returned by ILAENV.
86*>
87*> If LWORK = -1, then a workspace query is assumed; the routine
88*> only calculates the optimal size of the WORK array, returns
89*> this value as the first entry of the WORK array, and no error
90*> message related to LWORK is issued by XERBLA.
91*> \endverbatim
92*>
93*> \param[out] INFO
94*> \verbatim
95*> INFO is INTEGER
96*> = 0: successful exit
97*> < 0: if INFO = -i, the i-th argument had an illegal value
98*> > 0: if INFO = i, U(i,i) is exactly zero; the matrix is
99*> singular and its inverse could not be computed.
100*> \endverbatim
101*
102* Authors:
103* ========
104*
105*> \author Univ. of Tennessee
106*> \author Univ. of California Berkeley
107*> \author Univ. of Colorado Denver
108*> \author NAG Ltd.
109*
110*> \ingroup getri
111*
112* =====================================================================
113 SUBROUTINE cgetri( N, A, LDA, IPIV, WORK, LWORK, INFO )
114*
115* -- LAPACK computational routine --
116* -- LAPACK is a software package provided by Univ. of Tennessee, --
117* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
118*
119* .. Scalar Arguments ..
120 INTEGER INFO, LDA, LWORK, N
121* ..
122* .. Array Arguments ..
123 INTEGER IPIV( * )
124 COMPLEX A( LDA, * ), WORK( * )
125* ..
126*
127* =====================================================================
128*
129* .. Parameters ..
130 COMPLEX ZERO, ONE
131 parameter( zero = ( 0.0e+0, 0.0e+0 ),
132 $ one = ( 1.0e+0, 0.0e+0 ) )
133* ..
134* .. Local Scalars ..
135 LOGICAL LQUERY
136 INTEGER I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB,
137 $ NBMIN, NN
138* ..
139* .. External Functions ..
140 INTEGER ILAENV
141 REAL SROUNDUP_LWORK
142 EXTERNAL ilaenv, sroundup_lwork
143* ..
144* .. External Subroutines ..
145 EXTERNAL cgemm, cgemv, cswap, ctrsm, ctrtri, xerbla
146* ..
147* .. Intrinsic Functions ..
148 INTRINSIC max, min
149* ..
150* .. Executable Statements ..
151*
152* Test the input parameters.
153*
154 info = 0
155 nb = ilaenv( 1, 'CGETRI', ' ', n, -1, -1, -1 )
156 lwkopt = n*nb
157 work( 1 ) = sroundup_lwork(lwkopt)
158 lquery = ( lwork.EQ.-1 )
159 IF( n.LT.0 ) THEN
160 info = -1
161 ELSE IF( lda.LT.max( 1, n ) ) THEN
162 info = -3
163 ELSE IF( lwork.LT.max( 1, n ) .AND. .NOT.lquery ) THEN
164 info = -6
165 END IF
166 IF( info.NE.0 ) THEN
167 CALL xerbla( 'CGETRI', -info )
168 RETURN
169 ELSE IF( lquery ) THEN
170 RETURN
171 END IF
172*
173* Quick return if possible
174*
175 IF( n.EQ.0 )
176 $ RETURN
177*
178* Form inv(U). If INFO > 0 from CTRTRI, then U is singular,
179* and the inverse is not computed.
180*
181 CALL ctrtri( 'Upper', 'Non-unit', n, a, lda, info )
182 IF( info.GT.0 )
183 $ RETURN
184*
185 nbmin = 2
186 ldwork = n
187 IF( nb.GT.1 .AND. nb.LT.n ) THEN
188 iws = max( ldwork*nb, 1 )
189 IF( lwork.LT.iws ) THEN
190 nb = lwork / ldwork
191 nbmin = max( 2, ilaenv( 2, 'CGETRI', ' ', n, -1, -1, -1 ) )
192 END IF
193 ELSE
194 iws = n
195 END IF
196*
197* Solve the equation inv(A)*L = inv(U) for inv(A).
198*
199 IF( nb.LT.nbmin .OR. nb.GE.n ) THEN
200*
201* Use unblocked code.
202*
203 DO 20 j = n, 1, -1
204*
205* Copy current column of L to WORK and replace with zeros.
206*
207 DO 10 i = j + 1, n
208 work( i ) = a( i, j )
209 a( i, j ) = zero
210 10 CONTINUE
211*
212* Compute current column of inv(A).
213*
214 IF( j.LT.n )
215 $ CALL cgemv( 'No transpose', n, n-j, -one, a( 1, j+1 ),
216 $ lda, work( j+1 ), 1, one, a( 1, j ), 1 )
217 20 CONTINUE
218 ELSE
219*
220* Use blocked code.
221*
222 nn = ( ( n-1 ) / nb )*nb + 1
223 DO 50 j = nn, 1, -nb
224 jb = min( nb, n-j+1 )
225*
226* Copy current block column of L to WORK and replace with
227* zeros.
228*
229 DO 40 jj = j, j + jb - 1
230 DO 30 i = jj + 1, n
231 work( i+( jj-j )*ldwork ) = a( i, jj )
232 a( i, jj ) = zero
233 30 CONTINUE
234 40 CONTINUE
235*
236* Compute current block column of inv(A).
237*
238 IF( j+jb.LE.n )
239 $ CALL cgemm( 'No transpose', 'No transpose', n, jb,
240 $ n-j-jb+1, -one, a( 1, j+jb ), lda,
241 $ work( j+jb ), ldwork, one, a( 1, j ), lda )
242 CALL ctrsm( 'Right', 'Lower', 'No transpose', 'Unit', n, jb,
243 $ one, work( j ), ldwork, a( 1, j ), lda )
244 50 CONTINUE
245 END IF
246*
247* Apply column interchanges.
248*
249 DO 60 j = n - 1, 1, -1
250 jp = ipiv( j )
251 IF( jp.NE.j )
252 $ CALL cswap( n, a( 1, j ), 1, a( 1, jp ), 1 )
253 60 CONTINUE
254*
255 work( 1 ) = sroundup_lwork(iws)
256 RETURN
257*
258* End of CGETRI
259*
260 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
CGEMM
Definition cgemm.f:188
subroutine cgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
CGEMV
Definition cgemv.f:160
subroutine cgetri(n, a, lda, ipiv, work, lwork, info)
CGETRI
Definition cgetri.f:114
subroutine cswap(n, cx, incx, cy, incy)
CSWAP
Definition cswap.f:81
subroutine ctrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
CTRSM
Definition ctrsm.f:180
subroutine ctrtri(uplo, diag, n, a, lda, info)
CTRTRI
Definition ctrtri.f:109