LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
ctrsm.f
Go to the documentation of this file.
1*> \brief \b CTRSM
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE CTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
12*
13* .. Scalar Arguments ..
14* COMPLEX ALPHA
15* INTEGER LDA,LDB,M,N
16* CHARACTER DIAG,SIDE,TRANSA,UPLO
17* ..
18* .. Array Arguments ..
19* COMPLEX A(LDA,*),B(LDB,*)
20* ..
21*
22*
23*> \par Purpose:
24* =============
25*>
26*> \verbatim
27*>
28*> CTRSM solves one of the matrix equations
29*>
30*> op( A )*X = alpha*B, or X*op( A ) = alpha*B,
31*>
32*> where alpha is a scalar, X and B are m by n matrices, A is a unit, or
33*> non-unit, upper or lower triangular matrix and op( A ) is one of
34*>
35*> op( A ) = A or op( A ) = A**T or op( A ) = A**H.
36*>
37*> The matrix X is overwritten on B.
38*> \endverbatim
39*
40* Arguments:
41* ==========
42*
43*> \param[in] SIDE
44*> \verbatim
45*> SIDE is CHARACTER*1
46*> On entry, SIDE specifies whether op( A ) appears on the left
47*> or right of X as follows:
48*>
49*> SIDE = 'L' or 'l' op( A )*X = alpha*B.
50*>
51*> SIDE = 'R' or 'r' X*op( A ) = alpha*B.
52*> \endverbatim
53*>
54*> \param[in] UPLO
55*> \verbatim
56*> UPLO is CHARACTER*1
57*> On entry, UPLO specifies whether the matrix A is an upper or
58*> lower triangular matrix as follows:
59*>
60*> UPLO = 'U' or 'u' A is an upper triangular matrix.
61*>
62*> UPLO = 'L' or 'l' A is a lower triangular matrix.
63*> \endverbatim
64*>
65*> \param[in] TRANSA
66*> \verbatim
67*> TRANSA is CHARACTER*1
68*> On entry, TRANSA specifies the form of op( A ) to be used in
69*> the matrix multiplication as follows:
70*>
71*> TRANSA = 'N' or 'n' op( A ) = A.
72*>
73*> TRANSA = 'T' or 't' op( A ) = A**T.
74*>
75*> TRANSA = 'C' or 'c' op( A ) = A**H.
76*> \endverbatim
77*>
78*> \param[in] DIAG
79*> \verbatim
80*> DIAG is CHARACTER*1
81*> On entry, DIAG specifies whether or not A is unit triangular
82*> as follows:
83*>
84*> DIAG = 'U' or 'u' A is assumed to be unit triangular.
85*>
86*> DIAG = 'N' or 'n' A is not assumed to be unit
87*> triangular.
88*> \endverbatim
89*>
90*> \param[in] M
91*> \verbatim
92*> M is INTEGER
93*> On entry, M specifies the number of rows of B. M must be at
94*> least zero.
95*> \endverbatim
96*>
97*> \param[in] N
98*> \verbatim
99*> N is INTEGER
100*> On entry, N specifies the number of columns of B. N must be
101*> at least zero.
102*> \endverbatim
103*>
104*> \param[in] ALPHA
105*> \verbatim
106*> ALPHA is COMPLEX
107*> On entry, ALPHA specifies the scalar alpha. When alpha is
108*> zero then A is not referenced and B need not be set before
109*> entry.
110*> \endverbatim
111*>
112*> \param[in] A
113*> \verbatim
114*> A is COMPLEX array, dimension ( LDA, k ),
115*> where k is m when SIDE = 'L' or 'l'
116*> and k is n when SIDE = 'R' or 'r'.
117*> Before entry with UPLO = 'U' or 'u', the leading k by k
118*> upper triangular part of the array A must contain the upper
119*> triangular matrix and the strictly lower triangular part of
120*> A is not referenced.
121*> Before entry with UPLO = 'L' or 'l', the leading k by k
122*> lower triangular part of the array A must contain the lower
123*> triangular matrix and the strictly upper triangular part of
124*> A is not referenced.
125*> Note that when DIAG = 'U' or 'u', the diagonal elements of
126*> A are not referenced either, but are assumed to be unity.
127*> \endverbatim
128*>
129*> \param[in] LDA
130*> \verbatim
131*> LDA is INTEGER
132*> On entry, LDA specifies the first dimension of A as declared
133*> in the calling (sub) program. When SIDE = 'L' or 'l' then
134*> LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
135*> then LDA must be at least max( 1, n ).
136*> \endverbatim
137*>
138*> \param[in,out] B
139*> \verbatim
140*> B is COMPLEX array, dimension ( LDB, N )
141*> Before entry, the leading m by n part of the array B must
142*> contain the right-hand side matrix B, and on exit is
143*> overwritten by the solution matrix X.
144*> \endverbatim
145*>
146*> \param[in] LDB
147*> \verbatim
148*> LDB is INTEGER
149*> On entry, LDB specifies the first dimension of B as declared
150*> in the calling (sub) program. LDB must be at least
151*> max( 1, m ).
152*> \endverbatim
153*
154* Authors:
155* ========
156*
157*> \author Univ. of Tennessee
158*> \author Univ. of California Berkeley
159*> \author Univ. of Colorado Denver
160*> \author NAG Ltd.
161*
162*> \ingroup complex_blas_level3
163*
164*> \par Further Details:
165* =====================
166*>
167*> \verbatim
168*>
169*> Level 3 Blas routine.
170*>
171*> -- Written on 8-February-1989.
172*> Jack Dongarra, Argonne National Laboratory.
173*> Iain Duff, AERE Harwell.
174*> Jeremy Du Croz, Numerical Algorithms Group Ltd.
175*> Sven Hammarling, Numerical Algorithms Group Ltd.
176*> \endverbatim
177*>
178* =====================================================================
179 SUBROUTINE ctrsm(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
180*
181* -- Reference BLAS level3 routine --
182* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
183* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
184*
185* .. Scalar Arguments ..
186 COMPLEX ALPHA
187 INTEGER LDA,LDB,M,N
188 CHARACTER DIAG,SIDE,TRANSA,UPLO
189* ..
190* .. Array Arguments ..
191 COMPLEX A(LDA,*),B(LDB,*)
192* ..
193*
194* =====================================================================
195*
196* .. External Functions ..
197 LOGICAL LSAME
198 EXTERNAL lsame
199* ..
200* .. External Subroutines ..
201 EXTERNAL xerbla
202* ..
203* .. Intrinsic Functions ..
204 INTRINSIC conjg,max
205* ..
206* .. Local Scalars ..
207 COMPLEX TEMP
208 INTEGER I,INFO,J,K,NROWA
209 LOGICAL LSIDE,NOCONJ,NOUNIT,UPPER
210* ..
211* .. Parameters ..
212 COMPLEX ONE
213 parameter(one= (1.0e+0,0.0e+0))
214 COMPLEX ZERO
215 parameter(zero= (0.0e+0,0.0e+0))
216* ..
217*
218* Test the input parameters.
219*
220 lside = lsame(side,'L')
221 IF (lside) THEN
222 nrowa = m
223 ELSE
224 nrowa = n
225 END IF
226 noconj = lsame(transa,'T')
227 nounit = lsame(diag,'N')
228 upper = lsame(uplo,'U')
229*
230 info = 0
231 IF ((.NOT.lside) .AND. (.NOT.lsame(side,'R'))) THEN
232 info = 1
233 ELSE IF ((.NOT.upper) .AND. (.NOT.lsame(uplo,'L'))) THEN
234 info = 2
235 ELSE IF ((.NOT.lsame(transa,'N')) .AND.
236 + (.NOT.lsame(transa,'T')) .AND.
237 + (.NOT.lsame(transa,'C'))) THEN
238 info = 3
239 ELSE IF ((.NOT.lsame(diag,'U')) .AND. (.NOT.lsame(diag,'N'))) THEN
240 info = 4
241 ELSE IF (m.LT.0) THEN
242 info = 5
243 ELSE IF (n.LT.0) THEN
244 info = 6
245 ELSE IF (lda.LT.max(1,nrowa)) THEN
246 info = 9
247 ELSE IF (ldb.LT.max(1,m)) THEN
248 info = 11
249 END IF
250 IF (info.NE.0) THEN
251 CALL xerbla('CTRSM ',info)
252 RETURN
253 END IF
254*
255* Quick return if possible.
256*
257 IF (m.EQ.0 .OR. n.EQ.0) RETURN
258*
259* And when alpha.eq.zero.
260*
261 IF (alpha.EQ.zero) THEN
262 DO 20 j = 1,n
263 DO 10 i = 1,m
264 b(i,j) = zero
265 10 CONTINUE
266 20 CONTINUE
267 RETURN
268 END IF
269*
270* Start the operations.
271*
272 IF (lside) THEN
273 IF (lsame(transa,'N')) THEN
274*
275* Form B := alpha*inv( A )*B.
276*
277 IF (upper) THEN
278 DO 60 j = 1,n
279 IF (alpha.NE.one) THEN
280 DO 30 i = 1,m
281 b(i,j) = alpha*b(i,j)
282 30 CONTINUE
283 END IF
284 DO 50 k = m,1,-1
285 IF (b(k,j).NE.zero) THEN
286 IF (nounit) b(k,j) = b(k,j)/a(k,k)
287 DO 40 i = 1,k - 1
288 b(i,j) = b(i,j) - b(k,j)*a(i,k)
289 40 CONTINUE
290 END IF
291 50 CONTINUE
292 60 CONTINUE
293 ELSE
294 DO 100 j = 1,n
295 IF (alpha.NE.one) THEN
296 DO 70 i = 1,m
297 b(i,j) = alpha*b(i,j)
298 70 CONTINUE
299 END IF
300 DO 90 k = 1,m
301 IF (b(k,j).NE.zero) THEN
302 IF (nounit) b(k,j) = b(k,j)/a(k,k)
303 DO 80 i = k + 1,m
304 b(i,j) = b(i,j) - b(k,j)*a(i,k)
305 80 CONTINUE
306 END IF
307 90 CONTINUE
308 100 CONTINUE
309 END IF
310 ELSE
311*
312* Form B := alpha*inv( A**T )*B
313* or B := alpha*inv( A**H )*B.
314*
315 IF (upper) THEN
316 DO 140 j = 1,n
317 DO 130 i = 1,m
318 temp = alpha*b(i,j)
319 IF (noconj) THEN
320 DO 110 k = 1,i - 1
321 temp = temp - a(k,i)*b(k,j)
322 110 CONTINUE
323 IF (nounit) temp = temp/a(i,i)
324 ELSE
325 DO 120 k = 1,i - 1
326 temp = temp - conjg(a(k,i))*b(k,j)
327 120 CONTINUE
328 IF (nounit) temp = temp/conjg(a(i,i))
329 END IF
330 b(i,j) = temp
331 130 CONTINUE
332 140 CONTINUE
333 ELSE
334 DO 180 j = 1,n
335 DO 170 i = m,1,-1
336 temp = alpha*b(i,j)
337 IF (noconj) THEN
338 DO 150 k = i + 1,m
339 temp = temp - a(k,i)*b(k,j)
340 150 CONTINUE
341 IF (nounit) temp = temp/a(i,i)
342 ELSE
343 DO 160 k = i + 1,m
344 temp = temp - conjg(a(k,i))*b(k,j)
345 160 CONTINUE
346 IF (nounit) temp = temp/conjg(a(i,i))
347 END IF
348 b(i,j) = temp
349 170 CONTINUE
350 180 CONTINUE
351 END IF
352 END IF
353 ELSE
354 IF (lsame(transa,'N')) THEN
355*
356* Form B := alpha*B*inv( A ).
357*
358 IF (upper) THEN
359 DO 230 j = 1,n
360 IF (alpha.NE.one) THEN
361 DO 190 i = 1,m
362 b(i,j) = alpha*b(i,j)
363 190 CONTINUE
364 END IF
365 DO 210 k = 1,j - 1
366 IF (a(k,j).NE.zero) THEN
367 DO 200 i = 1,m
368 b(i,j) = b(i,j) - a(k,j)*b(i,k)
369 200 CONTINUE
370 END IF
371 210 CONTINUE
372 IF (nounit) THEN
373 temp = one/a(j,j)
374 DO 220 i = 1,m
375 b(i,j) = temp*b(i,j)
376 220 CONTINUE
377 END IF
378 230 CONTINUE
379 ELSE
380 DO 280 j = n,1,-1
381 IF (alpha.NE.one) THEN
382 DO 240 i = 1,m
383 b(i,j) = alpha*b(i,j)
384 240 CONTINUE
385 END IF
386 DO 260 k = j + 1,n
387 IF (a(k,j).NE.zero) THEN
388 DO 250 i = 1,m
389 b(i,j) = b(i,j) - a(k,j)*b(i,k)
390 250 CONTINUE
391 END IF
392 260 CONTINUE
393 IF (nounit) THEN
394 temp = one/a(j,j)
395 DO 270 i = 1,m
396 b(i,j) = temp*b(i,j)
397 270 CONTINUE
398 END IF
399 280 CONTINUE
400 END IF
401 ELSE
402*
403* Form B := alpha*B*inv( A**T )
404* or B := alpha*B*inv( A**H ).
405*
406 IF (upper) THEN
407 DO 330 k = n,1,-1
408 IF (nounit) THEN
409 IF (noconj) THEN
410 temp = one/a(k,k)
411 ELSE
412 temp = one/conjg(a(k,k))
413 END IF
414 DO 290 i = 1,m
415 b(i,k) = temp*b(i,k)
416 290 CONTINUE
417 END IF
418 DO 310 j = 1,k - 1
419 IF (a(j,k).NE.zero) THEN
420 IF (noconj) THEN
421 temp = a(j,k)
422 ELSE
423 temp = conjg(a(j,k))
424 END IF
425 DO 300 i = 1,m
426 b(i,j) = b(i,j) - temp*b(i,k)
427 300 CONTINUE
428 END IF
429 310 CONTINUE
430 IF (alpha.NE.one) THEN
431 DO 320 i = 1,m
432 b(i,k) = alpha*b(i,k)
433 320 CONTINUE
434 END IF
435 330 CONTINUE
436 ELSE
437 DO 380 k = 1,n
438 IF (nounit) THEN
439 IF (noconj) THEN
440 temp = one/a(k,k)
441 ELSE
442 temp = one/conjg(a(k,k))
443 END IF
444 DO 340 i = 1,m
445 b(i,k) = temp*b(i,k)
446 340 CONTINUE
447 END IF
448 DO 360 j = k + 1,n
449 IF (a(j,k).NE.zero) THEN
450 IF (noconj) THEN
451 temp = a(j,k)
452 ELSE
453 temp = conjg(a(j,k))
454 END IF
455 DO 350 i = 1,m
456 b(i,j) = b(i,j) - temp*b(i,k)
457 350 CONTINUE
458 END IF
459 360 CONTINUE
460 IF (alpha.NE.one) THEN
461 DO 370 i = 1,m
462 b(i,k) = alpha*b(i,k)
463 370 CONTINUE
464 END IF
465 380 CONTINUE
466 END IF
467 END IF
468 END IF
469*
470 RETURN
471*
472* End of CTRSM
473*
474 END
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine ctrsm(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
CTRSM
Definition: ctrsm.f:180