LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zqrt05()

subroutine zqrt05 ( integer  m,
integer  n,
integer  l,
integer  nb,
double precision, dimension(6)  result 
)

ZQRT05

Purpose:
 ZQRT05 tests ZTPQRT and ZTPMQRT.
Parameters
[in]M
          M is INTEGER
          Number of rows in lower part of the test matrix.
[in]N
          N is INTEGER
          Number of columns in test matrix.
[in]L
          L is INTEGER
          The number of rows of the upper trapezoidal part the
          lower test matrix.  0 <= L <= M.
[in]NB
          NB is INTEGER
          Block size of test matrix.  NB <= N.
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (6)
          Results of each of the six tests below.

          RESULT(1) = | A - Q R |
          RESULT(2) = | I - Q^H Q |
          RESULT(3) = | Q C - Q C |
          RESULT(4) = | Q^H C - Q^H C |
          RESULT(5) = | C Q - C Q |
          RESULT(6) = | C Q^H - C Q^H |
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 79 of file zqrt05.f.

80 IMPLICIT NONE
81*
82* -- LAPACK test routine --
83* -- LAPACK is a software package provided by Univ. of Tennessee, --
84* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
85*
86* .. Scalar Arguments ..
87 INTEGER LWORK, M, N, L, NB, LDT
88* .. Return values ..
89 DOUBLE PRECISION RESULT(6)
90*
91* =====================================================================
92*
93* ..
94* .. Local allocatable arrays
95 COMPLEX*16, ALLOCATABLE :: AF(:,:), Q(:,:),
96 $ R(:,:), WORK( : ), T(:,:),
97 $ CF(:,:), DF(:,:), A(:,:), C(:,:), D(:,:)
98 DOUBLE PRECISION, ALLOCATABLE :: RWORK(:)
99*
100* .. Parameters ..
101 DOUBLE PRECISION ZERO
102 COMPLEX*16 ONE, CZERO
103 parameter( zero = 0.0, one = (1.0,0.0), czero=(0.0,0.0) )
104* ..
105* .. Local Scalars ..
106 INTEGER INFO, J, K, M2, NP1
107 DOUBLE PRECISION ANORM, EPS, RESID, CNORM, DNORM
108* ..
109* .. Local Arrays ..
110 INTEGER ISEED( 4 )
111* ..
112* .. External Functions ..
113 DOUBLE PRECISION DLAMCH
114 DOUBLE PRECISION ZLANGE, ZLANSY
115 LOGICAL LSAME
116 EXTERNAL dlamch, zlange, zlansy, lsame
117* ..
118* .. Data statements ..
119 DATA iseed / 1988, 1989, 1990, 1991 /
120*
121 eps = dlamch( 'Epsilon' )
122 k = n
123 m2 = m+n
124 IF( m.GT.0 ) THEN
125 np1 = n+1
126 ELSE
127 np1 = 1
128 END IF
129 lwork = m2*m2*nb
130*
131* Dynamically allocate all arrays
132*
133 ALLOCATE(a(m2,n),af(m2,n),q(m2,m2),r(m2,m2),rwork(m2),
134 $ work(lwork),t(nb,n),c(m2,n),cf(m2,n),
135 $ d(n,m2),df(n,m2) )
136*
137* Put random stuff into A
138*
139 ldt=nb
140 CALL zlaset( 'Full', m2, n, czero, czero, a, m2 )
141 CALL zlaset( 'Full', nb, n, czero, czero, t, nb )
142 DO j=1,n
143 CALL zlarnv( 2, iseed, j, a( 1, j ) )
144 END DO
145 IF( m.GT.0 ) THEN
146 DO j=1,n
147 CALL zlarnv( 2, iseed, m-l, a( min(n+m,n+1), j ) )
148 END DO
149 END IF
150 IF( l.GT.0 ) THEN
151 DO j=1,n
152 CALL zlarnv( 2, iseed, min(j,l), a( min(n+m,n+m-l+1), j ) )
153 END DO
154 END IF
155*
156* Copy the matrix A to the array AF.
157*
158 CALL zlacpy( 'Full', m2, n, a, m2, af, m2 )
159*
160* Factor the matrix A in the array AF.
161*
162 CALL ztpqrt( m,n,l,nb,af,m2,af(np1,1),m2,t,ldt,work,info)
163*
164* Generate the (M+N)-by-(M+N) matrix Q by applying H to I
165*
166 CALL zlaset( 'Full', m2, m2, czero, one, q, m2 )
167 CALL zgemqrt( 'R', 'N', m2, m2, k, nb, af, m2, t, ldt, q, m2,
168 $ work, info )
169*
170* Copy R
171*
172 CALL zlaset( 'Full', m2, n, czero, czero, r, m2 )
173 CALL zlacpy( 'Upper', m2, n, af, m2, r, m2 )
174*
175* Compute |R - Q'*A| / |A| and store in RESULT(1)
176*
177 CALL zgemm( 'C', 'N', m2, n, m2, -one, q, m2, a, m2, one, r, m2 )
178 anorm = zlange( '1', m2, n, a, m2, rwork )
179 resid = zlange( '1', m2, n, r, m2, rwork )
180 IF( anorm.GT.zero ) THEN
181 result( 1 ) = resid / (eps*anorm*max(1,m2))
182 ELSE
183 result( 1 ) = zero
184 END IF
185*
186* Compute |I - Q'*Q| and store in RESULT(2)
187*
188 CALL zlaset( 'Full', m2, m2, czero, one, r, m2 )
189 CALL zherk( 'U', 'C', m2, m2, dreal(-one), q, m2, dreal(one),
190 $ r, m2 )
191 resid = zlansy( '1', 'Upper', m2, r, m2, rwork )
192 result( 2 ) = resid / (eps*max(1,m2))
193*
194* Generate random m-by-n matrix C and a copy CF
195*
196 DO j=1,n
197 CALL zlarnv( 2, iseed, m2, c( 1, j ) )
198 END DO
199 cnorm = zlange( '1', m2, n, c, m2, rwork)
200 CALL zlacpy( 'Full', m2, n, c, m2, cf, m2 )
201*
202* Apply Q to C as Q*C
203*
204 CALL ztpmqrt( 'L','N', m,n,k,l,nb,af(np1,1),m2,t,ldt,cf,m2,
205 $ cf(np1,1),m2,work,info)
206*
207* Compute |Q*C - Q*C| / |C|
208*
209 CALL zgemm( 'N', 'N', m2, n, m2, -one, q, m2, c, m2, one, cf, m2 )
210 resid = zlange( '1', m2, n, cf, m2, rwork )
211 IF( cnorm.GT.zero ) THEN
212 result( 3 ) = resid / (eps*max(1,m2)*cnorm)
213 ELSE
214 result( 3 ) = zero
215 END IF
216*
217* Copy C into CF again
218*
219 CALL zlacpy( 'Full', m2, n, c, m2, cf, m2 )
220*
221* Apply Q to C as QT*C
222*
223 CALL ztpmqrt( 'L','C',m,n,k,l,nb,af(np1,1),m2,t,ldt,cf,m2,
224 $ cf(np1,1),m2,work,info)
225*
226* Compute |QT*C - QT*C| / |C|
227*
228 CALL zgemm('C','N',m2,n,m2,-one,q,m2,c,m2,one,cf,m2)
229 resid = zlange( '1', m2, n, cf, m2, rwork )
230 IF( cnorm.GT.zero ) THEN
231 result( 4 ) = resid / (eps*max(1,m2)*cnorm)
232 ELSE
233 result( 4 ) = zero
234 END IF
235*
236* Generate random n-by-m matrix D and a copy DF
237*
238 DO j=1,m2
239 CALL zlarnv( 2, iseed, n, d( 1, j ) )
240 END DO
241 dnorm = zlange( '1', n, m2, d, n, rwork)
242 CALL zlacpy( 'Full', n, m2, d, n, df, n )
243*
244* Apply Q to D as D*Q
245*
246 CALL ztpmqrt('R','N',n,m,n,l,nb,af(np1,1),m2,t,ldt,df,n,
247 $ df(1,np1),n,work,info)
248*
249* Compute |D*Q - D*Q| / |D|
250*
251 CALL zgemm('N','N',n,m2,m2,-one,d,n,q,m2,one,df,n)
252 resid = zlange('1',n, m2,df,n,rwork )
253 IF( cnorm.GT.zero ) THEN
254 result( 5 ) = resid / (eps*max(1,m2)*dnorm)
255 ELSE
256 result( 5 ) = zero
257 END IF
258*
259* Copy D into DF again
260*
261 CALL zlacpy('Full',n,m2,d,n,df,n )
262*
263* Apply Q to D as D*QT
264*
265 CALL ztpmqrt('R','C',n,m,n,l,nb,af(np1,1),m2,t,ldt,df,n,
266 $ df(1,np1),n,work,info)
267
268*
269* Compute |D*QT - D*QT| / |D|
270*
271 CALL zgemm( 'N', 'C', n, m2, m2, -one, d, n, q, m2, one, df, n )
272 resid = zlange( '1', n, m2, df, n, rwork )
273 IF( cnorm.GT.zero ) THEN
274 result( 6 ) = resid / (eps*max(1,m2)*dnorm)
275 ELSE
276 result( 6 ) = zero
277 END IF
278*
279* Deallocate all arrays
280*
281 DEALLOCATE ( a, af, q, r, rwork, work, t, c, d, cf, df)
282 RETURN
subroutine zgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
ZGEMM
Definition zgemm.f:188
subroutine zgemqrt(side, trans, m, n, k, nb, v, ldv, t, ldt, c, ldc, work, info)
ZGEMQRT
Definition zgemqrt.f:168
subroutine zherk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
ZHERK
Definition zherk.f:173
subroutine zlacpy(uplo, m, n, a, lda, b, ldb)
ZLACPY copies all or part of one two-dimensional array to another.
Definition zlacpy.f:103
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function zlange(norm, m, n, a, lda, work)
ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition zlange.f:115
double precision function zlansy(norm, uplo, n, a, lda, work)
ZLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition zlansy.f:123
subroutine zlarnv(idist, iseed, n, x)
ZLARNV returns a vector of random numbers from a uniform or normal distribution.
Definition zlarnv.f:99
subroutine zlaset(uplo, m, n, alpha, beta, a, lda)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition zlaset.f:106
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine ztpmqrt(side, trans, m, n, k, l, nb, v, ldv, t, ldt, a, lda, b, ldb, work, info)
ZTPMQRT
Definition ztpmqrt.f:216
subroutine ztpqrt(m, n, l, nb, a, lda, b, ldb, t, ldt, work, info)
ZTPQRT
Definition ztpqrt.f:189
Here is the call graph for this function:
Here is the caller graph for this function: