LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zlansy()

double precision function zlansy ( character norm,
character uplo,
integer n,
complex*16, dimension( lda, * ) a,
integer lda,
double precision, dimension( * ) work )

ZLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex symmetric matrix.

Download ZLANSY + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> ZLANSY  returns the value of the one norm,  or the Frobenius norm, or
!> the  infinity norm,  or the  element of  largest absolute value  of a
!> complex symmetric matrix A.
!> 
Returns
ZLANSY
!>
!>    ZLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
!>             (
!>             ( norm1(A),         NORM = '1', 'O' or 'o'
!>             (
!>             ( normI(A),         NORM = 'I' or 'i'
!>             (
!>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
!>
!> where  norm1  denotes the  one norm of a matrix (maximum column sum),
!> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
!> normF  denotes the  Frobenius norm of a matrix (square root of sum of
!> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
!> 
Parameters
[in]NORM
!>          NORM is CHARACTER*1
!>          Specifies the value to be returned in ZLANSY as described
!>          above.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          symmetric matrix A is to be referenced.
!>          = 'U':  Upper triangular part of A is referenced
!>          = 'L':  Lower triangular part of A is referenced
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.  When N = 0, ZLANSY is
!>          set to zero.
!> 
[in]A
!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          The symmetric matrix A.  If UPLO = 'U', the leading n by n
!>          upper triangular part of A contains the upper triangular part
!>          of the matrix A, and the strictly lower triangular part of A
!>          is not referenced.  If UPLO = 'L', the leading n by n lower
!>          triangular part of A contains the lower triangular part of
!>          the matrix A, and the strictly upper triangular part of A is
!>          not referenced.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(N,1).
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
!>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
!>          WORK is not referenced.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 120 of file zlansy.f.

121*
122* -- LAPACK auxiliary routine --
123* -- LAPACK is a software package provided by Univ. of Tennessee, --
124* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
125*
126* .. Scalar Arguments ..
127 CHARACTER NORM, UPLO
128 INTEGER LDA, N
129* ..
130* .. Array Arguments ..
131 DOUBLE PRECISION WORK( * )
132 COMPLEX*16 A( LDA, * )
133* ..
134*
135* =====================================================================
136*
137* .. Parameters ..
138 DOUBLE PRECISION ONE, ZERO
139 parameter( one = 1.0d+0, zero = 0.0d+0 )
140* ..
141* .. Local Scalars ..
142 INTEGER I, J
143 DOUBLE PRECISION ABSA, SCALE, SUM, VALUE
144* ..
145* .. External Functions ..
146 LOGICAL LSAME, DISNAN
147 EXTERNAL lsame, disnan
148* ..
149* .. External Subroutines ..
150 EXTERNAL zlassq
151* ..
152* .. Intrinsic Functions ..
153 INTRINSIC abs, sqrt
154* ..
155* .. Executable Statements ..
156*
157 IF( n.EQ.0 ) THEN
158 VALUE = zero
159 ELSE IF( lsame( norm, 'M' ) ) THEN
160*
161* Find max(abs(A(i,j))).
162*
163 VALUE = zero
164 IF( lsame( uplo, 'U' ) ) THEN
165 DO 20 j = 1, n
166 DO 10 i = 1, j
167 sum = abs( a( i, j ) )
168 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
169 10 CONTINUE
170 20 CONTINUE
171 ELSE
172 DO 40 j = 1, n
173 DO 30 i = j, n
174 sum = abs( a( i, j ) )
175 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
176 30 CONTINUE
177 40 CONTINUE
178 END IF
179 ELSE IF( ( lsame( norm, 'I' ) ) .OR.
180 $ ( lsame( norm, 'O' ) ) .OR.
181 $ ( norm.EQ.'1' ) ) THEN
182*
183* Find normI(A) ( = norm1(A), since A is symmetric).
184*
185 VALUE = zero
186 IF( lsame( uplo, 'U' ) ) THEN
187 DO 60 j = 1, n
188 sum = zero
189 DO 50 i = 1, j - 1
190 absa = abs( a( i, j ) )
191 sum = sum + absa
192 work( i ) = work( i ) + absa
193 50 CONTINUE
194 work( j ) = sum + abs( a( j, j ) )
195 60 CONTINUE
196 DO 70 i = 1, n
197 sum = work( i )
198 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
199 70 CONTINUE
200 ELSE
201 DO 80 i = 1, n
202 work( i ) = zero
203 80 CONTINUE
204 DO 100 j = 1, n
205 sum = work( j ) + abs( a( j, j ) )
206 DO 90 i = j + 1, n
207 absa = abs( a( i, j ) )
208 sum = sum + absa
209 work( i ) = work( i ) + absa
210 90 CONTINUE
211 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
212 100 CONTINUE
213 END IF
214 ELSE IF( ( lsame( norm, 'F' ) ) .OR.
215 $ ( lsame( norm, 'E' ) ) ) THEN
216*
217* Find normF(A).
218*
219 scale = zero
220 sum = one
221 IF( lsame( uplo, 'U' ) ) THEN
222 DO 110 j = 2, n
223 CALL zlassq( j-1, a( 1, j ), 1, scale, sum )
224 110 CONTINUE
225 ELSE
226 DO 120 j = 1, n - 1
227 CALL zlassq( n-j, a( j+1, j ), 1, scale, sum )
228 120 CONTINUE
229 END IF
230 sum = 2*sum
231 CALL zlassq( n, a, lda+1, scale, sum )
232 VALUE = scale*sqrt( sum )
233 END IF
234*
235 zlansy = VALUE
236 RETURN
237*
238* End of ZLANSY
239*
logical function disnan(din)
DISNAN tests input for NaN.
Definition disnan.f:57
double precision function zlansy(norm, uplo, n, a, lda, work)
ZLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition zlansy.f:121
subroutine zlassq(n, x, incx, scale, sumsq)
ZLASSQ updates a sum of squares represented in scaled form.
Definition zlassq.f90:122
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: