LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zlansy()

double precision function zlansy ( character  norm,
character  uplo,
integer  n,
complex*16, dimension( lda, * )  a,
integer  lda,
double precision, dimension( * )  work 
)

ZLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex symmetric matrix.

Download ZLANSY + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZLANSY  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the  element of  largest absolute value  of a
 complex symmetric matrix A.
Returns
ZLANSY
    ZLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
Parameters
[in]NORM
          NORM is CHARACTER*1
          Specifies the value to be returned in ZLANSY as described
          above.
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          symmetric matrix A is to be referenced.
          = 'U':  Upper triangular part of A is referenced
          = 'L':  Lower triangular part of A is referenced
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.  When N = 0, ZLANSY is
          set to zero.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The symmetric matrix A.  If UPLO = 'U', the leading n by n
          upper triangular part of A contains the upper triangular part
          of the matrix A, and the strictly lower triangular part of A
          is not referenced.  If UPLO = 'L', the leading n by n lower
          triangular part of A contains the lower triangular part of
          the matrix A, and the strictly upper triangular part of A is
          not referenced.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(N,1).
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
          WORK is not referenced.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 122 of file zlansy.f.

123*
124* -- LAPACK auxiliary routine --
125* -- LAPACK is a software package provided by Univ. of Tennessee, --
126* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
127*
128* .. Scalar Arguments ..
129 CHARACTER NORM, UPLO
130 INTEGER LDA, N
131* ..
132* .. Array Arguments ..
133 DOUBLE PRECISION WORK( * )
134 COMPLEX*16 A( LDA, * )
135* ..
136*
137* =====================================================================
138*
139* .. Parameters ..
140 DOUBLE PRECISION ONE, ZERO
141 parameter( one = 1.0d+0, zero = 0.0d+0 )
142* ..
143* .. Local Scalars ..
144 INTEGER I, J
145 DOUBLE PRECISION ABSA, SCALE, SUM, VALUE
146* ..
147* .. External Functions ..
148 LOGICAL LSAME, DISNAN
149 EXTERNAL lsame, disnan
150* ..
151* .. External Subroutines ..
152 EXTERNAL zlassq
153* ..
154* .. Intrinsic Functions ..
155 INTRINSIC abs, sqrt
156* ..
157* .. Executable Statements ..
158*
159 IF( n.EQ.0 ) THEN
160 VALUE = zero
161 ELSE IF( lsame( norm, 'M' ) ) THEN
162*
163* Find max(abs(A(i,j))).
164*
165 VALUE = zero
166 IF( lsame( uplo, 'U' ) ) THEN
167 DO 20 j = 1, n
168 DO 10 i = 1, j
169 sum = abs( a( i, j ) )
170 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
171 10 CONTINUE
172 20 CONTINUE
173 ELSE
174 DO 40 j = 1, n
175 DO 30 i = j, n
176 sum = abs( a( i, j ) )
177 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
178 30 CONTINUE
179 40 CONTINUE
180 END IF
181 ELSE IF( ( lsame( norm, 'I' ) ) .OR. ( lsame( norm, 'O' ) ) .OR.
182 $ ( norm.EQ.'1' ) ) THEN
183*
184* Find normI(A) ( = norm1(A), since A is symmetric).
185*
186 VALUE = zero
187 IF( lsame( uplo, 'U' ) ) THEN
188 DO 60 j = 1, n
189 sum = zero
190 DO 50 i = 1, j - 1
191 absa = abs( a( i, j ) )
192 sum = sum + absa
193 work( i ) = work( i ) + absa
194 50 CONTINUE
195 work( j ) = sum + abs( a( j, j ) )
196 60 CONTINUE
197 DO 70 i = 1, n
198 sum = work( i )
199 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
200 70 CONTINUE
201 ELSE
202 DO 80 i = 1, n
203 work( i ) = zero
204 80 CONTINUE
205 DO 100 j = 1, n
206 sum = work( j ) + abs( a( j, j ) )
207 DO 90 i = j + 1, n
208 absa = abs( a( i, j ) )
209 sum = sum + absa
210 work( i ) = work( i ) + absa
211 90 CONTINUE
212 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
213 100 CONTINUE
214 END IF
215 ELSE IF( ( lsame( norm, 'F' ) ) .OR. ( lsame( norm, 'E' ) ) ) THEN
216*
217* Find normF(A).
218*
219 scale = zero
220 sum = one
221 IF( lsame( uplo, 'U' ) ) THEN
222 DO 110 j = 2, n
223 CALL zlassq( j-1, a( 1, j ), 1, scale, sum )
224 110 CONTINUE
225 ELSE
226 DO 120 j = 1, n - 1
227 CALL zlassq( n-j, a( j+1, j ), 1, scale, sum )
228 120 CONTINUE
229 END IF
230 sum = 2*sum
231 CALL zlassq( n, a, lda+1, scale, sum )
232 VALUE = scale*sqrt( sum )
233 END IF
234*
235 zlansy = VALUE
236 RETURN
237*
238* End of ZLANSY
239*
logical function disnan(din)
DISNAN tests input for NaN.
Definition disnan.f:59
double precision function zlansy(norm, uplo, n, a, lda, work)
ZLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition zlansy.f:123
subroutine zlassq(n, x, incx, scale, sumsq)
ZLASSQ updates a sum of squares represented in scaled form.
Definition zlassq.f90:124
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: