LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ zlansy()

double precision function zlansy ( character norm,
character uplo,
integer n,
complex*16, dimension( lda, * ) a,
integer lda,
double precision, dimension( * ) work )

ZLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex symmetric matrix.

Download ZLANSY + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> ZLANSY returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> complex symmetric matrix A. !>
Returns
ZLANSY
!> !> ZLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !>
Parameters
[in]NORM
!> NORM is CHARACTER*1 !> Specifies the value to be returned in ZLANSY as described !> above. !>
[in]UPLO
!> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> symmetric matrix A is to be referenced. !> = 'U': Upper triangular part of A is referenced !> = 'L': Lower triangular part of A is referenced !>
[in]N
!> N is INTEGER !> The order of the matrix A. N >= 0. When N = 0, ZLANSY is !> set to zero. !>
[in]A
!> A is COMPLEX*16 array, dimension (LDA,N) !> The symmetric matrix A. If UPLO = 'U', the leading n by n !> upper triangular part of A contains the upper triangular part !> of the matrix A, and the strictly lower triangular part of A !> is not referenced. If UPLO = 'L', the leading n by n lower !> triangular part of A contains the lower triangular part of !> the matrix A, and the strictly upper triangular part of A is !> not referenced. !>
[in]LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(N,1). !>
[out]WORK
!> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), !> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, !> WORK is not referenced. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 120 of file zlansy.f.

121*
122* -- LAPACK auxiliary routine --
123* -- LAPACK is a software package provided by Univ. of Tennessee, --
124* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
125*
126* .. Scalar Arguments ..
127 CHARACTER NORM, UPLO
128 INTEGER LDA, N
129* ..
130* .. Array Arguments ..
131 DOUBLE PRECISION WORK( * )
132 COMPLEX*16 A( LDA, * )
133* ..
134*
135* =====================================================================
136*
137* .. Parameters ..
138 DOUBLE PRECISION ONE, ZERO
139 parameter( one = 1.0d+0, zero = 0.0d+0 )
140* ..
141* .. Local Scalars ..
142 INTEGER I, J
143 DOUBLE PRECISION ABSA, SCALE, SUM, VALUE
144* ..
145* .. External Functions ..
146 LOGICAL LSAME, DISNAN
147 EXTERNAL lsame, disnan
148* ..
149* .. External Subroutines ..
150 EXTERNAL zlassq
151* ..
152* .. Intrinsic Functions ..
153 INTRINSIC abs, sqrt
154* ..
155* .. Executable Statements ..
156*
157 IF( n.EQ.0 ) THEN
158 VALUE = zero
159 ELSE IF( lsame( norm, 'M' ) ) THEN
160*
161* Find max(abs(A(i,j))).
162*
163 VALUE = zero
164 IF( lsame( uplo, 'U' ) ) THEN
165 DO 20 j = 1, n
166 DO 10 i = 1, j
167 sum = abs( a( i, j ) )
168 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
169 10 CONTINUE
170 20 CONTINUE
171 ELSE
172 DO 40 j = 1, n
173 DO 30 i = j, n
174 sum = abs( a( i, j ) )
175 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
176 30 CONTINUE
177 40 CONTINUE
178 END IF
179 ELSE IF( ( lsame( norm, 'I' ) ) .OR.
180 $ ( lsame( norm, 'O' ) ) .OR.
181 $ ( norm.EQ.'1' ) ) THEN
182*
183* Find normI(A) ( = norm1(A), since A is symmetric).
184*
185 VALUE = zero
186 IF( lsame( uplo, 'U' ) ) THEN
187 DO 60 j = 1, n
188 sum = zero
189 DO 50 i = 1, j - 1
190 absa = abs( a( i, j ) )
191 sum = sum + absa
192 work( i ) = work( i ) + absa
193 50 CONTINUE
194 work( j ) = sum + abs( a( j, j ) )
195 60 CONTINUE
196 DO 70 i = 1, n
197 sum = work( i )
198 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
199 70 CONTINUE
200 ELSE
201 DO 80 i = 1, n
202 work( i ) = zero
203 80 CONTINUE
204 DO 100 j = 1, n
205 sum = work( j ) + abs( a( j, j ) )
206 DO 90 i = j + 1, n
207 absa = abs( a( i, j ) )
208 sum = sum + absa
209 work( i ) = work( i ) + absa
210 90 CONTINUE
211 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
212 100 CONTINUE
213 END IF
214 ELSE IF( ( lsame( norm, 'F' ) ) .OR.
215 $ ( lsame( norm, 'E' ) ) ) THEN
216*
217* Find normF(A).
218*
219 scale = zero
220 sum = one
221 IF( lsame( uplo, 'U' ) ) THEN
222 DO 110 j = 2, n
223 CALL zlassq( j-1, a( 1, j ), 1, scale, sum )
224 110 CONTINUE
225 ELSE
226 DO 120 j = 1, n - 1
227 CALL zlassq( n-j, a( j+1, j ), 1, scale, sum )
228 120 CONTINUE
229 END IF
230 sum = 2*sum
231 CALL zlassq( n, a, lda+1, scale, sum )
232 VALUE = scale*sqrt( sum )
233 END IF
234*
235 zlansy = VALUE
236 RETURN
237*
238* End of ZLANSY
239*
logical function disnan(din)
DISNAN tests input for NaN.
Definition disnan.f:57
double precision function zlansy(norm, uplo, n, a, lda, work)
ZLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition zlansy.f:121
subroutine zlassq(n, x, incx, scale, sumsq)
ZLASSQ updates a sum of squares represented in scaled form.
Definition zlassq.f90:122
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: