LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zlansy.f
Go to the documentation of this file.
1*> \brief \b ZLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex symmetric matrix.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZLANSY + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlansy.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlansy.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlansy.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* DOUBLE PRECISION FUNCTION ZLANSY( NORM, UPLO, N, A, LDA, WORK )
20*
21* .. Scalar Arguments ..
22* CHARACTER NORM, UPLO
23* INTEGER LDA, N
24* ..
25* .. Array Arguments ..
26* DOUBLE PRECISION WORK( * )
27* COMPLEX*16 A( LDA, * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> ZLANSY returns the value of the one norm, or the Frobenius norm, or
37*> the infinity norm, or the element of largest absolute value of a
38*> complex symmetric matrix A.
39*> \endverbatim
40*>
41*> \return ZLANSY
42*> \verbatim
43*>
44*> ZLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
45*> (
46*> ( norm1(A), NORM = '1', 'O' or 'o'
47*> (
48*> ( normI(A), NORM = 'I' or 'i'
49*> (
50*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
51*>
52*> where norm1 denotes the one norm of a matrix (maximum column sum),
53*> normI denotes the infinity norm of a matrix (maximum row sum) and
54*> normF denotes the Frobenius norm of a matrix (square root of sum of
55*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
56*> \endverbatim
57*
58* Arguments:
59* ==========
60*
61*> \param[in] NORM
62*> \verbatim
63*> NORM is CHARACTER*1
64*> Specifies the value to be returned in ZLANSY as described
65*> above.
66*> \endverbatim
67*>
68*> \param[in] UPLO
69*> \verbatim
70*> UPLO is CHARACTER*1
71*> Specifies whether the upper or lower triangular part of the
72*> symmetric matrix A is to be referenced.
73*> = 'U': Upper triangular part of A is referenced
74*> = 'L': Lower triangular part of A is referenced
75*> \endverbatim
76*>
77*> \param[in] N
78*> \verbatim
79*> N is INTEGER
80*> The order of the matrix A. N >= 0. When N = 0, ZLANSY is
81*> set to zero.
82*> \endverbatim
83*>
84*> \param[in] A
85*> \verbatim
86*> A is COMPLEX*16 array, dimension (LDA,N)
87*> The symmetric matrix A. If UPLO = 'U', the leading n by n
88*> upper triangular part of A contains the upper triangular part
89*> of the matrix A, and the strictly lower triangular part of A
90*> is not referenced. If UPLO = 'L', the leading n by n lower
91*> triangular part of A contains the lower triangular part of
92*> the matrix A, and the strictly upper triangular part of A is
93*> not referenced.
94*> \endverbatim
95*>
96*> \param[in] LDA
97*> \verbatim
98*> LDA is INTEGER
99*> The leading dimension of the array A. LDA >= max(N,1).
100*> \endverbatim
101*>
102*> \param[out] WORK
103*> \verbatim
104*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
105*> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
106*> WORK is not referenced.
107*> \endverbatim
108*
109* Authors:
110* ========
111*
112*> \author Univ. of Tennessee
113*> \author Univ. of California Berkeley
114*> \author Univ. of Colorado Denver
115*> \author NAG Ltd.
116*
117*> \ingroup lanhe
118*
119* =====================================================================
120 DOUBLE PRECISION FUNCTION zlansy( NORM, UPLO, N, A, LDA, WORK )
121*
122* -- LAPACK auxiliary routine --
123* -- LAPACK is a software package provided by Univ. of Tennessee, --
124* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
125*
126* .. Scalar Arguments ..
127 CHARACTER norm, uplo
128 INTEGER lda, n
129* ..
130* .. Array Arguments ..
131 DOUBLE PRECISION work( * )
132 COMPLEX*16 a( lda, * )
133* ..
134*
135* =====================================================================
136*
137* .. Parameters ..
138 DOUBLE PRECISION one, zero
139 parameter( one = 1.0d+0, zero = 0.0d+0 )
140* ..
141* .. Local Scalars ..
142 INTEGER i, j
143 DOUBLE PRECISION absa, scale, sum, value
144* ..
145* .. External Functions ..
146 LOGICAL lsame, disnan
147 EXTERNAL lsame, disnan
148* ..
149* .. External Subroutines ..
150 EXTERNAL zlassq
151* ..
152* .. Intrinsic Functions ..
153 INTRINSIC abs, sqrt
154* ..
155* .. Executable Statements ..
156*
157 IF( n.EQ.0 ) THEN
158 VALUE = zero
159 ELSE IF( lsame( norm, 'M' ) ) THEN
160*
161* Find max(abs(A(i,j))).
162*
163 VALUE = zero
164 IF( lsame( uplo, 'U' ) ) THEN
165 DO 20 j = 1, n
166 DO 10 i = 1, j
167 sum = abs( a( i, j ) )
168 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
169 10 CONTINUE
170 20 CONTINUE
171 ELSE
172 DO 40 j = 1, n
173 DO 30 i = j, n
174 sum = abs( a( i, j ) )
175 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
176 30 CONTINUE
177 40 CONTINUE
178 END IF
179 ELSE IF( ( lsame( norm, 'I' ) ) .OR.
180 $ ( lsame( norm, 'O' ) ) .OR.
181 $ ( norm.EQ.'1' ) ) THEN
182*
183* Find normI(A) ( = norm1(A), since A is symmetric).
184*
185 VALUE = zero
186 IF( lsame( uplo, 'U' ) ) THEN
187 DO 60 j = 1, n
188 sum = zero
189 DO 50 i = 1, j - 1
190 absa = abs( a( i, j ) )
191 sum = sum + absa
192 work( i ) = work( i ) + absa
193 50 CONTINUE
194 work( j ) = sum + abs( a( j, j ) )
195 60 CONTINUE
196 DO 70 i = 1, n
197 sum = work( i )
198 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
199 70 CONTINUE
200 ELSE
201 DO 80 i = 1, n
202 work( i ) = zero
203 80 CONTINUE
204 DO 100 j = 1, n
205 sum = work( j ) + abs( a( j, j ) )
206 DO 90 i = j + 1, n
207 absa = abs( a( i, j ) )
208 sum = sum + absa
209 work( i ) = work( i ) + absa
210 90 CONTINUE
211 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
212 100 CONTINUE
213 END IF
214 ELSE IF( ( lsame( norm, 'F' ) ) .OR.
215 $ ( lsame( norm, 'E' ) ) ) THEN
216*
217* Find normF(A).
218*
219 scale = zero
220 sum = one
221 IF( lsame( uplo, 'U' ) ) THEN
222 DO 110 j = 2, n
223 CALL zlassq( j-1, a( 1, j ), 1, scale, sum )
224 110 CONTINUE
225 ELSE
226 DO 120 j = 1, n - 1
227 CALL zlassq( n-j, a( j+1, j ), 1, scale, sum )
228 120 CONTINUE
229 END IF
230 sum = 2*sum
231 CALL zlassq( n, a, lda+1, scale, sum )
232 VALUE = scale*sqrt( sum )
233 END IF
234*
235 zlansy = VALUE
236 RETURN
237*
238* End of ZLANSY
239*
240 END
logical function disnan(din)
DISNAN tests input for NaN.
Definition disnan.f:57
double precision function zlansy(norm, uplo, n, a, lda, work)
ZLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition zlansy.f:121
subroutine zlassq(n, x, incx, scale, sumsq)
ZLASSQ updates a sum of squares represented in scaled form.
Definition zlassq.f90:122
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48